Kniga-Online.club
» » » » Лиза Рэндалл - Закрученные пассажи: Проникая в тайны скрытых размерностей пространства.

Лиза Рэндалл - Закрученные пассажи: Проникая в тайны скрытых размерностей пространства.

Читать бесплатно Лиза Рэндалл - Закрученные пассажи: Проникая в тайны скрытых размерностей пространства.. Жанр: Прочая научная литература издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Метод вычисления зависимости наблюдаемых величин от энергии или расстояния, впервые развитый в 1974 году Кеннетом Вильсоном, получил причудливое название ренормализационной группы. Наряду с симметриями, двумя другими самыми мощными инструментами исследования в физике являются методы эффективной теории и ренормализационной группы, причем оба эти метода включают рассмотрение физических процессов на очень разных масштабах расстояний или энергий. Слово «группа» пришло в эту теорию из математики, хотя его математическое происхождение для нас несущественно.

Слово ренормализация звучит получше. Имеется в виду тот факт, что на каждом интересующем нас масштабе расстояний вы делаете паузу, чтобы решить, что делать дальше. Вы определяете, какие частицы и взаимодействия существенны при определенных интересующих вас в данный момент энергиях. Затем вы совершаете новую нормировку, т. е. новую калибровку каждого параметра теории.

Метод ренормализационной группы использует идеи, напоминающие те, которые были описаны в гл. 2. Там мы обсуждали возможность интерпретации теории более высокой размерности на языке теории меньшей размерности и исследовали двумерную теорию с одним малым свернутым измерением, как будто теория была только одномерной. Сворачивая измерения, мы игнорировали все детали того, что происходило внутри лишних измерений, и предполагали, что все можно описать с помощью меньшего числа измерений. Новой «нормировкой» было четырехмерное описание, которое можно было использовать, если сосредоточиться на изучении больших расстояний.

Очень похожую процедуру можно использовать для построении теории, применимой на больших расстояниях, исходя из теории, работающей на малых расстояниях. Для этого решите, какая минимальная длина вас интересует, и «сотрите» физику, относящуюся к меньшим расстояниям. Один из способов сделать это — взять средние значение тех величин, чьи детали поведения могут отличаться только на меньших расстояниях, которыми мы решили пренебречь. Допустим, вы смотрите на решетку, заполненную серыми точками разных оттенков. Тогда, вы буквально усредняете оттенки более мелких точек, чтобы определить тот оттенок более крупных точек, который будет воспроизводить цветовой эффект.

Ваши глаза делают это автоматически, когда вы смотрите на какое-то размытое изображение.

Если вы способны видеть предметы только с заданным уровнем точности и хотите делать полезные вычисления, связывающие измеримые величины, то вам не требуется знать, что происходит на меньших масштабах. Самый эффективный подход часто включает выбор «размера пикселя» в вашей теории, согласующийся с вашим уровнем точности. Таким путем вы можете, например, пренебречь тяжелыми частицами, которые вы никогда не сможете породить, и короткодействующими взаимодействиями, которые никогда не случаются. Вместо этого вы можете сконцентрировать ваши вычисления на частицах и взаимодействиях, относящихся к той энергии, которую удается достичь.

Однако, если вы знаете более точную теорию, применимую на меньших расстояниях, ее можно использовать для расчета параметров интересующей вас эффективной теории, т. е. эффективной теории с меньшим разрешением. Так же как в примере с серыми точками разных оттенков, когда вы переходите от эффективной теории с короткодействующим разрешением к другой теории с менее точным разрешением, вы по существу меняете «размер пикселя», который вы выбрали для анализа вашей теории. Метод ренормализационной группы говорит вам, как вычислить то влияние, которое могут иметь такие короткодействующие взаимодействия на частицы в вашей дальнодействующей теории. Вы экстраполируете физические процессы от одного масштаба длины или энергии к другому.

Виртуальные частицы

Вычисления по методу ренормализационной группы осуществляют эти экстраполяции, учитывая влияние квантово-механических процессов и виртуальных частиц. Виртуальные частицы, являющиеся следствием квантовой механики, — странные, призрачные двойники реальных частиц. Они внезапно возникают и исчезают, существуя в реальности лишь крохотный промежуток времени. Виртуальные частицы подвержены тем же взаимодействиям и обладают теми же зарядами, что и физические частицы, но их энергии кажутся неправильными. Например, очевидно, что движущаяся очень быстро частица обладает запасом энергии. В то же время виртуальная частица может обладать колоссальной скоростью и не иметь энергии. На самом деле виртуальная частица может иметь любую энергию, отличающуюся от энергии, которую имеет соответствующая реальная физическая частица. Если бы она имела такую же энергию, она была бы не виртуальной, а реальной частицей. Существование виртуальных частиц — странное свойство квантовой теории поля, которое следует учитывать, чтобы делать правильные предсказания.

Так как же могут существовать эти кажущиеся невозможными частицы? Виртуальная частица с ее взятой взаймы энергией не могла бы существовать, если бы не соотношение неопределенностей, позволяющее частицам иметь неправильную энергию в течение промежутка времени, настолько короткого, что его никогда нельзя измерить.

Соотношение неопределенностей утверждает, что измерение энергии (или массы) с бесконечной точностью потребовало бы бесконечно долгого времени, и чем дольше живет частица, тем точнее можно осуществить измерение ее энергии. Однако, если частица короткоживущая и ее энергию никак невозможно определить с бесконечной точностью, то энергия может на время отклониться от значения, которым обладает истинная долгоживущая частица. На самом деле, в силу соотношения неопределенностей, частицы будут делать все, что им захочется, так долго, как могут. У виртуальных частиц нет угрызений совести, и они плохо ведут себя всякий раз, когда никто не видит. (Один физик из Амстердама даже предположил, что эти частицы голландцы.)

Вакуум можно представлять себе как резервуар энергии. Виртуальные частицы — это частицы, возникающие из вакуума и на время одалживающие у него часть энергии. Они существуют только одно мгновение, а затем возвращаются обратно в вакуум, унося с собой энергию, которую одолжили. Эта энергия может вернуться на свое первоначальное место, или может быть передана частицам, находящимся в другом месте.

Квантово-механический вакуум — беспокойное место. И хотя вакуум по определению пуст, квантовые эффекты приводят к тому, что он кишит виртуальными частицами и античастицами, которые рождаются и уничтожаются, даже несмотря на то, что стабильные долгоживущие частицы отсутствуют. В принципе могут рождаться любые пары частиц и античастиц, но на очень короткое время, что не позволяет их непосредственно наблюдать. Однако каким бы кратким ни было их существование, мы должны учитывать виртуальные частицы, так как несмотря ни на что они оставляют свои отпечатки на взаимодействиях долгоживущих частиц.

Наличие виртуальных частиц приводит к измеряемым следствиям, так как они влияют на взаимодействия реальных физических частиц, входящих в область взаимодействия и покидающих ее. За краткое время своего существования виртуальная частица может пролететь от одной реальной частицы к другой, прежде чем исчезнуть и вернуть свой энергетический долг вакууму. Таким образом, виртуальные частицы выступают в качестве посредников, влияющих на взаимодействия долгоживущих стабильных частиц.

Например, фотон на рис. 47 (стр. 137), обмен которым порождал классическое электромагнитное взаимодействие, был на самом деле виртуальным фотоном. Его энергия не равнялась энергии реального фотона, но этого и не требовалось. Нужно было всего лишь, чтобы он существовал достаточно долго, чтобы передать электромагнитное взаимодействие и позволить взаимодействовать реальным заряженным частицам.

Другой пример виртуальных частиц показан на рис. 59. Здесь фотон влетает в область взаимодействия, рождается виртуальная электрон-позитронная пара, а затем эта пара поглощается в другом месте. В том месте, где частицы поглощаются, из вакуума возникает другой фотон, который уносит энергию, временно одолженную промежуточной электрон-позитронной парой. Исследуем одно примечательное свойство взаимодействия этого типа.

Почему интенсивность взаимодействия зависит от расстояния?

Интенсивность известных нам взаимодействий зависит от энергий участвующих во взаимодействиях частиц и расстояний между ними, и частично эта зависимость определяется виртуальными частицами. Например, интенсивность электромагнитного взаимодействия меньше, когда два электрона удалены на большее расстояние друг от друга. (Напомним, что это квантово-механическое уменьшение существует дополнительно к классической зависимости электромагнетизма от расстояния.) Следствия, к которым приводят виртуальные частицы и зависимость взаимодействий от расстояния, вполне реальны; теоретические предсказания и эксперименты очень хорошо согласуются друг с другом.

Перейти на страницу:

Лиза Рэндалл читать все книги автора по порядку

Лиза Рэндалл - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Закрученные пассажи: Проникая в тайны скрытых размерностей пространства. отзывы

Отзывы читателей о книге Закрученные пассажи: Проникая в тайны скрытых размерностей пространства., автор: Лиза Рэндалл. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*