А. Лельевр - Альманах "Эврика"-84
…На одной из встреч в Лаборатории нейтронной физики ее директор академик Илья Михайлович Франк шутливо заметил, что никакой нейтронной физики не существует, а есть только методы использования нейтронов в самых разных приложениях: в физике элементарных частиц, в физике конденсированных сред (включая и молекулярную биологию) и в ядерной физике. Как получить насыщенный поток нейтронов, если не существует их природного источника?
Появление в 40-х годах атомных реакторов позволило нейтронной физике сделать огромный шаг вперед. Но в исследовательских реакторах удельная мощность не очень велика — в лучшем случае 60 тысяч кВт. Естественно, возник вопрос: как получить более мощные источники нейтронов?
Оригинальное и эффективное решение этой задачи предложил в свое время член-корреспондент Академии наук СССР Дмитрий Иванович Блохинцев. Оно состоит в том, чтобы использовать вместо обычного реактора, создающего постоянный поток нейтронов, реактор импульсный, который дает короткие периодически повторяющиеся вспышки нейтронов. С 1970 года в Лаборатории нейтронной физики велось строительство мощного импульсного реактора на быстрых нейтронах с жидкометаллическим охлаждением. Реактор получил название ИБР-2. Он способен давать во время вспышки мощность около 8000 мегаватт. Это громадная мощность — мощность нескольких атомных электростанций.
Дубненцы планируют на импульсном реакторе провести большую программу исследований. Возможно, ученые выяснят, каким образом полимеры образуют свою структуру, каков характер химических связей в кристаллах. Это позволит создавать материалы с Заданными физико-химическими свойствами, необходимые народному хозяйству.
Существует программа исследований с помощью ультрахолодных нейтронов. Такие нейтроны можно исследовать как любой химический элемент. И если окажется, что у нейтрона есть электрический дипольный момент, то коренным образом изменятся теоретические представления о природе Вселенной.
Известно, что быстрые нейтроны обладают благоприятными радиологическими характеристиками. Поэтому ученые Дубны надеются с их помощью проводить диагностику злокачественных образований.
У НЕЙТРОНА-ЗАРЯД?Нейтрон получил свое название благодаря тому, что физики были абсолютно уверены: он — нейтрален, не имеет электрического заряда. Но этой уверенности явно поубавилось. И мы сейчас заняты тем, что ищем в нейтроне… слабые электрические свойства. Нужно проверить и недавно высказанное предположение, что нейтрон может переходить в антинейтрон. Если эти поиски увенчаются успехом, перед Физиками, изучающими ядра атомов, откроются совершенно новые перспективы.
У ученых к нейтронам особое отношение. Вместе с протонами они образуют ядра атомов. Но, если протоны имеют заряд и поэтому их можно одержать, например, с помощью электромагнитного поля, то нейтроны долго считались «неуловимыми». Тем не менее одна из последних работ нашей лаборатории увенчалась получением нейтронного газа из так называемых ультрахолодных нейтронов. Этот газ можно хранить… даже в обычной стеклянной бутылке, заткнутой пробкой. И нейтроны, подобно сказочным джиннам будут «сидеть» в ней такое время, какое нужно исследователям, чтобы изучить их.
В своем кругу физики называют нейтрон рабочей лошадью атомной энергетики. Выделяясь при распаде атомных ядер, он участвует во всех реакциях, протекающих в ядерных и термоядерных установках. И он же причина многих сложностей. Под действием нейтронов бетон вспучивается и трескается, сталь «разбухает» и делается хрупкой, как стекло, изоляторы начинают проводить электрический ток. Все эти явления мы изучаем в нашей лаборатории, помогая энергетикам создать более совершенные и надежные атомные установки.
До последнего времени основным нашим «инструментом» был уникальный, единственный в мире импульсный источник нейтронов ИБР-30. Создавая мощнейшие импульсы нейтронного излучения, он позволяет, образно говоря, «просвечивать» не только предметы, но и явления — получать мгновенные фотографии стремительных процессов, заглянуть в самые «потаенные» структуры материи, исследовать образцы из самых разнообразных материалов. Но уже сейчас в нашей лаборатории вводится в строй в сотни раз более мощный импульсный реактор ИБР-2, который откроет перед исследователями новые возможности.
Что мы ждем от него? Нейтроны, например, могут многое рассказать о живой материи. В отличие от электронного микроскопа, который показывает строение мертвых, препарированных клеток, нейтронный пучок позволяет заглянуть в живой организм, не опасаясь разрушить его ткани или нарушить нормальную работу.
Сейчас, например, с помощью нейтронов мы изучаем иммуноглобулины— внутриклеточные структуры, которые выводят из организма вредные вещества. Задача состоит в том, чтобы лучше разобраться в механизме иммунной защиты нашего организма, вооружить медиков действенными методами, позволяющими бороться с «поломками» в нем. Нейтронные пучки могут повысить и точность диагностики при опухолевых заболеваниях, просвечивание ими помогает установить размеры и расположения новообразований. Наконец, эти работы позволили нам взяться за нейтронную терапию — разработку способов направленного воздействия нейтронов на опухоли.
ПАРАДОКСЫ ОДИНОКИХ МОЛЕКУЛПоступают все новые и новые данные о чудесных свойствах возбужденной воды. Она на треть ускоряет рост и урожайность всех, без исключения, растений, способствует приросту веса и повышению жизнестойкости у птиц, домашних животных, рыб. Получается, что можно повышать урожай без удобрений — «удобрять» возбужденной водой! Или не тратить лишних кормов и получать «дармовые» привесы птиц, скота, рыбы только за счет воды…
Более того, оказалось, что эти факты известны давным-давно. В течение столетий крестьяне во многих областях страны поят домашних животных и птиц талой снеговой или ледовой водой. А горцы Чечено-Ингушетии, например, среди которых вчетверо больше долгожителей, чем в целом по стране, прямо объясняют это тем, что пьют свежеталую воду, стекающую с гор.
Как же объяснить все эти парадоксальные, по сути, явления? К сожалению, фундаментальная наука до сих пор этой проблемой не занималась. Более того, многие ее представители считают, что и проблемы-то нет: все дело, мол, в примесях воздуха или крохотных частичках твердых веществ, присутствующих в воде. Именно они, подвергаясь активному электромагнитному или тепловому воздействию, меняют свойства воды. Однако простые наблюдения самих сторонников этой «дежурной» гипотезы показывают ее несостоятельность. Так, если измерить электропроводность очень чистой воды (бидистиллята) до омагничивания, то она оказывается меньше, чем после омагничивания. А ведь то ничтожное количество примесей, которые есть в бидистилляте и от которых зависит электропроводность, осталось неизменным.
Можно привести десятки подобных примеров. Но все они находят простое и легкое объяснение, если принять за основу, что внешние воздействия влияют не на количество посторонних частиц в воде, а изменяют строение самой воды. В этом и состоит суть новой гипотезы.
Химическая формула воды известна. Однако далеко не каждый знает, что эти молекулы представляют собой крохотные магнитики, водородный «полюс» которых заряжен положительно, а кислородный — отрицательно. И в соответствии с физическими законами эти магнитики притягиваются друг к другу противоположно заряженными «концами»: плюс — к минусу, минус — к плюсу. Так происходит «слипание» молекул в крупные образования — ассоциаты. А среди ассоциатов «гуляют» отдельные неслипшиеся мономолекулы. Они-то, очень активные в физическом, химическом и биологическом отношении, и «задают тон» свойствам всей воды. Но в обычной воде мономолекул очень мало — сотые доли процента. Разумеется, они не в состоянии преодолеть инерцию огромных сгустков «неповоротливых» ассоциатов.
Совсем другая картина получается, когда на воду обрушивается электрическое или магнитное поле, удары лопастей дезинтегратора или мощный поток калорий. Столь разные способы возбуждения воды приводят к одинаковому результату — слипшиеся ассоциаты дробятся, распадаются на отдельные мономолекулы. Число их резко увеличивается, а в результате возрастает физико-химическая и биологическая активность воды.
В эту картину хорошо укладывается и последующее «старение» воды, когда она постепенно теряет свою активность. Это происходит потому, что притягиваемые магнитными силами мономолекулы снова слипаются в ассоциаты. Процесс вполне естественный, но и здесь есть свои нюансы. Если при возбуждении воды ее одновременно перемешивать, то время «старения» значительно растягивается — вода долго остается активной. Дело в том, что образовавшиеся мономолекулы при перемешивании разгоняются по всему объему воды, теряются среди оставшихся ассоциатов, и им требуется несколько десятков часов, чтобы «отыскать» друг друга и соединиться.