Абрам Фет - Катастрофы в природе и обществе
Разумеется, полностью замкнутая система жизнеобеспечения может применяться и при коротких сроках, но в таких случаях она не оптимальна и проигрывает замкнутым системам по массе, а значит и по надежности. Корабль Гагарина незачем было снабжать высокозамкнутой системой жизнеобеспечения, потому что системы этого корабля были предназначены для полета в несколько дней. Но при попытке использовать такую систему в полете к Марсу пришлось бы брать огромные запасы; к тому же, через некоторое время эта система вообще перестала бы работать от недостатка сменных деталей. В таком случае гораздо лучшей оказалась бы система с более высокой замкнутостью. Исследования этого вопроса кратко резюмируются рисунком 2, где показана зависимость стартовой массы М (то есть массы систем переработки и обслуживания вместе с запасами) от срока миссии t для трех вариантов системы жизнеобеспечения.
Рис.2
В варианте a масса оборудования М наименьшая, но в этом варианте система не замкнута, а потому необходимые запасы больше, чем в варианте b. В варианте b стартовая масса больше, но это оборудование позволяет повысить замкнутость и уменьшить необходимые запасы продуктов. Наконец, в варианте с имеется дополнительное оборудование, достаточное для достижения полной замкнутости: в этом варианте вообще не требуется запасов продуктов; кроме того, предполагается, что вместо использования запасных частей производится ремонт, так что стартовая масса вообще не зависит от дальности полета. На рисунке 2 показан случай, когда при малых сроках полета, до точки пересечения 1 графиков a и b, вариант а (с меньшей замкнутостью) имеет меньшую массу и в этом смысле лучше. Между точками 1 и 2 наилучшим оказывается вариант b (со средней замкнутостью). Наконец, при больших сроках, после точки 2, предпочтителен вариант с (с полной замкнутостью).
Искусственные замкнутые биосферы
Как уже было сказано, до сих пор космические корабли и станции не были замкнутыми, и даже оставались довольно далекими от замкнутости. Естественно, возникла идея провести на поверхности Земли эксперименты с возможно более автономными системами жизнеобеспечения. Такие системы были названы "искусственными биосферами". Простейшие из них, биосферы без человека, не содержали никакой аппаратуры: это были просто биоценозы в запаянных сосудах, куда помещались водоросли и бактерии, или водоросли и рыбы. В некоторых сосудах жизнь погибала, но в других устанавливались жизнеспособные биоценозы, которые можно было изучать. Разумеется, в таких случаях нельзя было заранее предвидеть, выживет сообщество или нет, и какую форму оно примет.
Искусственные биосферы, приближающиеся к полной замкнутости и пригодные для жизни человека, были впервые созданы красноярскими биофизиками. Наиболее известна система "Биос-3", где в начале и середине семидесятых годов проводились многомесячные успешные испытания с людьми в условиях высокой автономности. Три человека жили в этой системе до шести месяцев, хорошо себя чувствовали, и здоровье их тщательно контролировалось, в том числе их собственными измерениями. Эта система имеет сходство с земной биосферой, поскольку кислород, вода и пища восстанавливаются в ней с помощью растений. Возможность достаточно точно рассчитывать такие системы не представлялась заранее очевидной и была проверена в ряде экспериментов, что может оказаться существенным шагом в понимании глобальной экологии Земли. Результаты системы "Биос-3" и в других отношениях представляют общий биологический интерес, выходящий за пределы первоначальных задач космонавтики. По своей конфигурации "Биос-3" является прототипом варианта жизнеобеспечения лунной базы, представляющегося перспективным в настоящее время. Система была изолирована от внешней среды (хотя и были небольшие утечки); в ней имитировались обычные в космосе функции – снабжение извне энергией (электрическим током), охлаждение (водопроводной водой) и связь (телефонная вместо радиосвязи). Экипаж, как уже сказано, состоял из трех человек. Кроме экипажа, в системе находились растения, снабжавшие людей кислородом и растительной пищей, и микроорганизмы, входящие в обычную микрофлору человека, а также в микрофлору растений. Циркуляция кислорода полностью выполнялась растениями, причем качество атмосферы в течение всего эксперимента оставалось хорошим.
Идеальным уровнем химического замыкания было бы использование дополнительного человеку растения-регенератора, снабжающего человека всей необходимой ему пищей и кислородом и потребляющего все его отходы, как это изображено на рисунке 3.
Рис.3
Но, к сожалению, таких дополнительных человеку растений не существует. Приближение к полному замыканию можно обеспечить только с одновременным использованием ряда растений. До сих пор исследовались – теоретически и экспериментально – только системы жизнеобеспечения из небольшого числа организмов-регенераторов – микроводорослей, водородных бактерий и высших растений. Приемлемая схема жизнеобеспечения человека в замкнутой системе может выглядеть следующим образом:
Рис.4
В системе "Биос-3" регенерация осуществлялась высшими растениями. В принципе можно было бы держать в биосфере и животных, но эта проблема пока не решена. Пытались, например, приспособить к замкнутой системе козу, но она чувствовала себя плохо: скорее всего ей не хватало движения. Делали также опыты с моллюсками и рыбой. Содержание животных требует раз в десять больше энергии, чем выращивание растений: животные питаются растительной пищей, и получение пищи с помощью таких "посредников" дорого стоит. В природе это возможно благодаря даровой солнечной энергии, а в космосе получение энергии ограничено имеющейся техникой.
Чисто растительное питание в течение длительного времени невозможно, так как соотношение аминокислот в растениях не совпадает с их соотношением, необходимым для питания человека. У всех народов, даже питающихся преимущественно углеводами, имеются добавки мясной или молочной пищи. В системе "Биос-3" использовались запасы сушеного мяса и других животных продуктов, естественно, нарушающие замкнутость биосферы. При этом состав питания экипажа оказывается примерно таким же, как в повседневной жизни. Были предложения заменить мясо набором аминокислот, компенсирующим упомянутую разницу. Вес их составит около 30 – 50 грамм в сутки, что вполне подходит и в условиях космических рейсов. Эти предложения, впрочем. сомнительны с физиологической точки зрения.
При расчете питания людей принимались во внимание четыре основных элемента: углерод С, кислород О, водород Н и азот N, составляющие вместе 98% оборота элементов. При этом 75% приходится на три вещества – О, СO2 и Н2О. Производительность растений по питанию рассчитывалась таким образом, чтобы удовлетворить потребности людей, при выбранном нормальном рационе. Вещества, выделяемые людьми, почти полностью возвращались растениям. Трудность представляли не употребляемые в пищу остатки растений (солома). В "Биос-3" солому сушили и откладывали. Ставились опыты сжигания соломы, чтобы получать углекислый газ для питания растений, но эти попытки не дали удовлетворительных результатов. Можно было бы окислять солому под давлением, получая из нее вещества, усваиваемые растениями. Если пренебречь небольшими не идущими в оборот остатками, то растения получали от людей те же вещества и в том же количестве, как доставляли их людям: это следует из закона сохранения вещества.
Система была незамкнутой по питанию в двух отношениях. Во-первых, часть биомассы растений (и небольшое количество сухих отходов человека) в конечном счете не использовались и откладывались; во-вторых, часть пищи бралась не от растений, а из запасов. Поскольку (как мы увидим) по дыханию была достигнута полная замкнутость, из закона сохранения вещества следует, что неиспользуемые отходы и используемые запасы пищи должны содержать в точности одно и то же количество всех отдельных элементов: в самом деле, добавляемая масса элементов должна быть равна выводимой из системы. Поэтому переход к полной замкнутости требует полного использования всех отходов растений. На станции "Биос-3" эта задача не была удовлетворительно решена. Лишь в последнее время были предложены более удачные способы обработки растительных отходов, позволяющие использовать их для питания растений.
С другой стороны, медики настаивали на сохранении в рационе экипажа принятого по медицинским нормам количества животной пищи. Вследствие этого, около 50 – 60% пищи бралось из запасов, и лишь 40 – 50% получалось от растений. Если удастся преодолеть трудности с остатками биомассы, то можно будет поставить эксперименты с вегетарианским питанием, дополненным, как уже было сказано, добавками аминокислот. Таким образом можно будет достигнуть замкнутости по питанию.