Kniga-Online.club
» » » » Макс Тегмарк - Наша математическая вселенная. В поисках фундаментальной природы реальности

Макс Тегмарк - Наша математическая вселенная. В поисках фундаментальной природы реальности

Читать бесплатно Макс Тегмарк - Наша математическая вселенная. В поисках фундаментальной природы реальности. Жанр: Прочая научная литература издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Итак, декогеренцию можно уменьшить, используя сложное лабораторное оборудование вроде вакуумных насосов и установок, охлаждающих до экстремально низких температур, но мы никогда не сможем отключить декогеренцию наших нейронов. Мы не знаем, как устроено наше сознание, но знаем наверняка, что вся информация, поступающая в сознание из окружающего мира, должна сначала пройти по нейронам от органов чувств, например от глаз по зрительным нервам или от ушей по слуховым нервам, а они испытывают декогеренцию за смехотворно короткое время. Так что к моменту, когда мы субъективно воспринимаем впечатление о внешнем мире, декогеренция уже завершилась, а это гарантирует невозможность восприятия нами квантовых странностей и объясняет, почему мы воспринимаем лишь устойчивые обычные состояния.

Среди спорных вопросов в физике есть несколько столь величественных, что они уже несколько поколений возвышаются над всеми остальными. Великая полемика об интерпретации квантовой механики, очевидно, из их числа. Другая касается второго начала термодинамики. Оно утверждает, что энтропия изолированной системы никогда не убывает. Энтропия – это количественная мера неполноты информации, которая имеется у нас о системе, по сути, количество битов информации, которые потребовались бы нам для задания ее квантового состояния. Некоторые ученые превозносят второе начало едва ли не до небес, как великий астрофизик сэр Артур Эддингтон, сказавший: «Закон монотонного возрастания энтропии – второе начало термодинамики – занимает, как мне кажется, высшее положение среди законов природы. Если кто-нибудь заметит вам, что ваша любимая теория Вселенной не согласуется с уравнениями Максвелла, то тем хуже для уравнений Максвелла. Если окажется, что ваша теория противоречит наблюдениям, – ну что же, и экспериментаторам случается ошибаться. Но если окажется, что ваша теория противоречит второму началу термодинамики, то у вас не остается ни малейшей надежды: ваша теория обречена на бесславный конец»[49]. Другие ученые, в том числе Максвелл, Гиббс, Лошмидт, Пуанкаре выдвинули серьезные возражения против второго начала. До сих пор нет консенсуса относительно того, даны ли удовлетворительные ответы на их возражения.

По-моему, эти две великие дискуссии, квантово-механическая и термодинамическая, связаны в том смысле, что обе можно разрешить разом, если применить стандартное квантово-механическое определение энтропии Джона фон Неймана, отказаться от коллапса волновой функции и принимать во внимание все составляющие реальности: субъект, объект и среду.

Как показано на рис. 8.8, измерение и декогеренция отражают взаимодействие объекта соответственно с субъектом и со средой. Хотя процессы измерения и декогеренции могут выглядеть различно, энтропия открывает между ними интересный параллелизм: нехватка у нас информации об объекте является очень важной величиной, в физике называемой энтропией. Если объект ни с чем не взаимодействует, его энтропия остается постоянной: спустя секунду вы будете знать об его состоянии ровно столько же, сколько знаете сейчас, поскольку можете вычислить его будущее состояние по исходному с помощью уравнения Шредингера. Если объект взаимодействует с вами, то обычно вы получаете о нем больше информации, и его энтропия уменьшается. Например, после открывания глаз (рис. 8.1) существует две ваши копии. Они наблюдают различные исходы, но обе знают, как легла карта в соответствующей параллельной вселенной, а значит, получают об этой карте один бит дополнительной информации. Но если объект взаимодействует со средой, вы обычно теряете информацию о нем, и его энтропия увеличивается. (Если Филипп знает, где лежат его карточки с покемонами, то у него станет меньше информации об их местоположении после того, как с ними поиграет Александр.) Если вы знаете, что карта находится в квантовом состоянии, соответствующем ее присутствию в двух местах сразу, а затем какой-нибудь человек или фотон обнаружит ее, но не сообщит вам об этом, то вы потеряете один бит информации о ней. Сначала вы знали ее квантовое состояние, а теперь она фактически пребывает в одном из двух квантовых состояний, но вы не знаете, в каком. Короче говоря, я представляю это так: энтропия объекта убывает, когда вы на него смотрите, и возрастает, когда не смотрите. Декогеренция – это просто измерение, результатов которого вы не знаете. Стремясь к большей строгости, можно точнее сформулировать второе начало термодинамики:

1. Энтропия объекта не может убывать, если он не взаимодействует с субъектом.

2. Энтропия объекта не может возрастать, если он не взаимодействует со средой.

Рис. 8.9. Таким я запомнил Джона Уилера (на этом снимке 2004 г. он держит книгу, изданную к конференции, приуроченной к его 90-летнему юбилею). Далее его аспиранты: Ричард Фейнман (ок. 1943 г.), Хью Эверетт (ок. 1957 г.) и Войцех Зурек (2007 г., возле исландского водопада). (Права на снимки: Pamela Bond-Contractor [Ellipses Enterprises], Mark Oliver Everett, Anthony Aguirre.)

Традиционная формулировка этого закона просто соответствует игнорированию субъекта. Публикуя статью по этому вопросу (http://arxiv.org/pdf/1108.3080.pdf)[50], я включил в нее доказательство второй части утверждения (как декогеренция увеличивает энтропию), однако строгое доказательство первой части (того, что в среднем наблюдение всегда уменьшает энтропию) мне не далось, несмотря на то, что мои компьютерные модели надежно его подтверждали. Затем случилось нечто удивительное, напомнившее мне приход в Массачусетский технологический институт: полный энергии 21-летний студент Грант Гарибян попросил у меня интересную задачу. Мы объединили усилия, и он взялся за дело с огромным рвением, поглощая математические книги как попкорн и осваивая математические инструменты вроде произведения Шура или спектральной мажоризации, незнакомые большинству физиков и известные мне в основном от отца-математика. Однажды, увидев Гранта, я понял по его торжествующей улыбке: он решил задачу! Мы надеемся опубликовать его доказательство, как только я закончу эту книгу.

Квантовый суицид

Я привык делить физиков на две категории: титанов и простых смертных. Титаны – великие исторические фигуры вроде Ньютона, Эйнштейна, Шредингера, Фейнмана, легендарные, наделенные сверхъестественной силой. Смертные – это физики, с которыми я встречался, хотя и, возможно, блестящие ученые, однако определенно обычные люди вроде нас. И еще был Джон Уилер. Я встретил его в январе 1996 года. Случилось это в копенгагенском кафетерии, во время ланча на конференции. Ему было тогда 94 года. Для меня Уилер был «последним титаном». Он работал с Нильсом Бором над проблемами ядерной физики. Он придумал термин «черная дыра». Он первым заговорил о пространственно-временной пене. Фейнман и Эверетт были его аспирантами. Он стал одним из моих супергероев благодаря своему пристрастию к безумным идеям. И вот он просто обедает! Я почувствовал, что обязан познакомиться с ним, иначе никогда себе этого не прощу. Подходя к его столу, я очень нервничал. Незадолго до того люди, стоящие выше меня в академической пищевой цепочке, поколебали мою уверенность в себе: в разных ситуациях два профессора посреди разговора вдруг повернулись ко мне спиной и ушли, а ведь они были простыми смертными. А вот Уилер приветствовал меня, неопытного постдока, улыбкой, и пригласил присоединиться к ланчу! Услышав, что я интересуюсь квантовой механикой, он поделился свежими соображениями относительно понятия существования и дал свои недавние заметки. Он ни разу меня не перебил и говорил так, что я чувствовал себя равным ему. Через две недели я даже получил от него электронное письмо – письмо от титана! Он писал:

Мне было очень приятно и интересно пообщаться с вами в Копенгагене, поскольку, я уверен, вы разделяете мое убеждение в том, что за квантовой механикой стоит еще не открытый глубокий и удивительный принцип, наподобие великой идеи Эйнштейна, пролившего свет на силу и пределы всеобщей, как казалось, ньютоновской теории. Вероятность такого открытия, конечно, пропорциональна нашей вере в то, что существует нечто, подлежащее открытию.

Он пригласил меня приехать в Принстон: «Я хотел бы иметь возможность ежедневно с вами беседовать». В то время я выбирал между предложениями должности постдока – и как я мог после этого отклонить предложение из Принстона? Переехав туда, я стал регулярно посещать Уилера и лучше его узнал. Он и его жена пришли на вечеринку по поводу моего новоселья. Он даже расписался у меня в свидетельстве о браке, выданном штатом Нью-Джерси – в моем мире это было все равно, что заполучить в свидетели Господа Бога.

В кабинете его часто отвлекали, так что он предпочитал разговаривать, накручивая круги по коридорам третьего этажа вокруг внутреннего двора физического корпуса Принстонского университета. История оживала, когда он описывал, что чувствовал, наблюдая за первым испытанием водородной бомбы, или при встрече с Клаусом Фуксом, с помощью которого Советский Союз получил доступ к ядерному оружию. Уилер дал мне чувство личной связи с отцами-основателями в моей области, которые для него были простыми смертными.

Перейти на страницу:

Макс Тегмарк читать все книги автора по порядку

Макс Тегмарк - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Наша математическая вселенная. В поисках фундаментальной природы реальности отзывы

Отзывы читателей о книге Наша математическая вселенная. В поисках фундаментальной природы реальности, автор: Макс Тегмарк. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*