Сергей Михайлович Иванов - Утро вечера мудренее
Однажды бельгийский нейрофизиолог Бремер взял кошачий мозг и отрезал его от всего остального на уровне первого шейного сегмента. На электроэнцефалограмме, снятой с этого мозга, отражалась нормальная смена сна и бодрствования. Из этого можно было бы сделать вывод, что все аппараты, включающие сон и бодрствование, находятся в изолированном мозге, а не где-нибудь еще. Бремер сделал перерезку на уровне среднего мозга. У него получился препарат, который он назвал «конечный изолированный мозг». Электроэнцефалограмма показала, что он беспрерывно спит. Бремер, подобно Павлову и многим своим предшественникам, рассудил, что сон вызывается снижением притока импульсов к коре. Но каких импульсов? Может быть, не столько внешний мир заставляет нас бодрствовать, сколько внутренний? К такому выводу пришли американский нейрофизиолог Мэгун и его итальянский коллега Моруцци.
Мэгун исследовал больных полиомиелитом, который поражает нижние отделы мозгового ствола. Довольно скоро он установил зависимость между неполадками в мышечном тонусе и разрушением нижних отделов ретикулярной формации — огромной сети нейронов, растянутых по всему стволу. Мэгун и Моруцци доказали, что беспробудный сон, в который у Бремера погрузился «конечный изолированный мозг», вызван был отсечением от полушарий именно ретикулярной формации, чьи активирующие импульсы поддерживают как мышечный тонус, так и уровень бодрствования.
Любые импульсы, приходящие от органов чувств в соответствующие отделы коры, попадают по особым ответвлениям и в ретикулярную формацию. Ближайший сосед ее, гиппокамп, оценивает поступающие сигналы, сравнивая все, что приходит извне, с тем, что хранится в памяти. О результатах анализа сообщается ретикулярной формации: если поступающий сигнал нов или по каким-либо причинам достоин особого изучения, находящаяся в верхних отделах ретикулярной формации активирующая восходящая система посылает в кору дополнительный поток энергии. Организм переходит к активному бодрствованию. Даже во сне этот поток импульсов не прекращается совсем, а лишь снижается до определенного уровня, что позволяет животным просыпаться при приближении опасности.
Однажды физиологи вживили кошке электроды в то место, где происходит сортировка сигналов, идущих от уха к коре. Приборчик, стоявший около клетки с кошкой, издавал щелчки с регулярными интервалами, и такая же регулярная серия пиков возникала на кривой, вычерчиваемой самописцем. Неожиданно экспериментатор показывал кошке мышку. Кошка проявляла интерес к новому раздражителю, и в тот же миг амплитуда пиковых потенциалов, вызываемых щелчками, резко снижалась. Что же происходило в ее мозгу? Ретикулярная формация получала сигнал о мышке и перераспределяла потоки своих активирующих импульсов. Поток, направлявшийся в слуховые зоны коры, ослабевал, а поток, направлявшийся к зрительным, обонятельным и двигательным центрам, усиливался.
Амплитуда пиков снижалась, но не исчезала. Эта «фоновая активность» мозга — энергетическая основа нашего неосознаваемого внимания к фону жизни, к тому, на чем мы не сосредотачиваемся никогда, но что, благодаря этой активности, оседает в нашей памяти, чтобы потом, когда потребуется, всплыть перед нами в виде уже удобном для сознательного восприятия. Без ретикулярной формации не может работать ни внимание, ни восприятие, ни память, ни мышление. Это силовая станция нашего бодрствования, и даже отчасти нашего сна, ибо сон, как мы вскоре увидим, процесс весьма активный, и на него уходит немало энергии.
ЧТЕНИЕ МЫСЛЕЙ
Сначала Луиджи Гальвани, экспериментируя с лягушачьими лапками, открыл «животное эклектричество». Потом два врача прусской армии Фритч и Гетциг решили посмотреть, что получится, если раздражать током обнаженный мозг. Получилось то же, что и у Гальвани: мертвецы, усеявшие поле под Седаном, где экспериментировали любознательные врачи, шевелили конечностями. Электрические свойства мозга оказались родственны свойствам нерва и мышцы.
Затем испанский нейрогистолог Рамон-и-Кахал открыл, что знаменитое серое вещество мозга состоит из отдельных клеток — нейронов, а белое, менее знаменитое, из их отростков — дендритов. По самому длинному из дендритов, аксону, нервный импульс бежит от одного нейрона к другому. Кончик аксона разветвляется на множество мелких волоконцев. То место, где они приближаются к соседнему нейрону, физиолог Чарльз Шеррингтон называл синапсом. Когда нервный импульс достигает конца аксона, там высвобождается химическое вещество — медиатор (переносчик). Медиатор пересекает синаптический промежуток, возбуждает соседний нейрон, в нем меняется потенциал, импульс бежит к следующему аксону, и так далее. Каждый аксон образует синапсы на телах и дендритах нескольких нейронов, а каждый нейрон получает импульсы от нескольких аксонов. Так что некоторая медлительность медиаторной передачи импульсов окупается бесчисленностью этих импульсов. Шеррингтон сравнил мозг с «чудесным ткацким станком, на котором миллионы сверкающих челноков ткут мимолетный узор, непрестанно меняющийся, но всегда полный значения».
Какого же значения полон этот узор? Первым, кто записал электрические потенциалы мозга, был физиолог-любитель, мэр Ливерпуля лорд Катон. В 1875 году он обнаружил на скальпе у кроликов разность потенциалов между двумя точками. Опыты подобного рода проводили затем русские физиологи В. Я. Данилевский и В. В. Правдич-Неминский. Но настоящая расшифровка «мимолетного узора» началась лишь в 1924 году, когда астрийский психиатр Ганс Бергер приклеил к голове добровольца металлические пластинки, соединил их с гальванометром и увидел на шкале колеблющиеся потенциалы напряжением в несколько тысячных вольта. Изменения биопотенциалов во времени вычерчивались самописцем в виде кривых. Эти изменения Бергер назвал волнами. Так родилась электроэнцефалография.
Когда Бергер опубликовал сообщение о своих исследованиях, встречено оно было равнодушно. Для расцвета электроэнцефалографии потребовалось еще лет десять, в течение которых были разработаны высокочувствительные усилители и началась классификация мозговых волн, или ритмов. Расцвету электроэнцефалографии сопутствовала и бурная вспышка фантазии среди широкой публики. Только и было разговоров, что о чтении мыслей на расстоянии. В какой-то степени эти надежды впоследствии оправдались: находясь у себя в клинике, физиолог может видеть мозговые ритмы космонавта, работающего на орбитальной станции. Ритмы, которые записаны на электроэнцефалограмме, отражают среднее электрическое состояние сотен миллионов нейронов. Но и это состояние способно рассказать о многом и, прежде всего, о преобладающих в данный момент эмоциях. Вот перед нами альфа-ритм — ритм спокойного бодрствования с закрытыми глазами, когда мозг ничем не занят. Человек сосредоточился, и на месте альфа-ритма появился частый, стремительный бета-ритм. У беспокойства или упорного раздумья свой рисунок — тета-ритм, у ожидания — Е-волна. Е-волна затухает, когда стимул оценен и решение принято. У некоторых людей она затухать не желает. Это люди во всем сомневающиеся, эксцентричные, пытающиеся увидеть загадочное в самом очевидном: поэты, изобретатели, чудаки. А вот у этих Е-волны совсем не бывает. Это натуры беспечные; они грешат, каются в своих грехах и тут же забывают о своих клятвах. По электроэнцефалограммам можно судить о степени эмоционального напряжения, о некоторых нервных болезнях, даже об особенностях личности. Лицо ваше может оставаться непроницаемым, но биотокам мозга нет до этого дела: бета-ритм отразит вашу сосредоточенность, Е-волна — любопытство, а тета-ритм — досаду на то, что скрыть свои чувства вам не удалось. Чем не чтение мыслей?
Об уровнях сна и бодрствования судить по записям биотоков еще проще. Бергер обнаружил, что во время сна на электроэнцефалограмме видны медленные высокоамплитудные волны, а во время бодрствования — быстрые низкоамплитудные. Английский нейрофизиолог Эдриан предложил оценивать эти волны с точки зрения синхронизации или десинхронизации работы нейронов. Медленные волны сна отражают собой синхронную, то есть одновременную работу нейронов, а быстрые волны бодрствования — десинхронизацию. При напряженном бодрствовании электроэнцефалограмма выглядит почти плоской линией: нейроны работают вразнобой и не могут сложить свои импульсы в отчетливый рисунок.
Обратите внимание: и в том и в другом случае речь идет о работе нейронов. Когда нейрофизиологи, экспериментируя над животными, начали снимать электроэнцефалограммы уже не со скальпа, а прямо с мозговых структур, стало совершенно очевидно, что сон — это весьма активный процесс, вызванный энергичной деятельностью синхронизирующих систем. Вживленные в кошачий мозг электроды показали, что во время бодрствования половина нейронов возбуждена, а половина заторможена. Во время сна то же: половина возбуждена, а половина заторможена, только половины эти как бы поменялись местами. Впоследствии же обнаружилось, что во сне многие нейроны даже усиливают свою активность и возбудимость нейронных систем в некоторых зонах коры чуть ли не выше, чем у бодрствующего мозга.