Kniga-Online.club

Александр Ивин - Логика

Читать бесплатно Александр Ивин - Логика. Жанр: Прочая научная литература издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Все рыбы (Р) дышат жабрами (М).

Киты (S) не дышат жабрами (М).

Все киты не рыбы.

По схеме третьей фигуры построен силлогизм:

Все бамбуки (М) цветут один раз в жизни (Р).

Все бамбуки (М) – многолетние растения (S).

Некоторые многолетние растения цветут один раз в жизни.

По схеме четвёртой фигуры построен силлогизм:

Все рыбы (Р) плавают (М).

Все плавающие (М) живут в воде (S).

Некоторые живущие в воде – рыбы.

Посылками и заключениями силлогизмов могут быть категорические суждения четырех видов: SaP, SiP, SeP и SoP.

Модусами силлогизма называются разновидности фигур, отличающиеся характером посылок и заключения.

Всего с точки зрения всевозможных сочетаний посылок и заключения в каждой фигуре насчитывается 64 модуса. В четырех фигурах 4 × 64 = 256 модусов.

Силлогизмы, как и все дедуктивные умозаключения, делятся на правильные и неправильные. Задача логической теории силлогизма – систематизировать правильные силлогизмы, указать их отличительные черты.

Из всех возможных модусов силлогизма только 24 модуса являются правильными, по шесть в каждой фигуре. Вот традиционно принятые названия правильных модусов первых двух фигур:

1-я фигура: Barbara, Celarent, Darii, Ferio, Barbari, Celaront;

2-я фигура: Cesare, Camestres, Festino, Baroco, Cesaro, Camestros.

В каждом из этих названий содержатся три гласных буквы. Они указывают, какие именно категорические высказывания используются в модусе в качестве его посылок и заключения. Так, название Celarent означает, что в этом модусе первой фигуры большей посылкой является общеотрицательное высказывание (SeP), меньшей – общеутвердительное (SaP) и заключением – общеотрицательное высказывание (SeP).

Из 24 правильных модусов силлогизма 5 являются ослабленными: заключениями в них являются частноутвердительные или частноотрицательные высказывания, хотя в случае других модусов эти же посылки дают общеутвердительные или общеотрицательные заключения (ср. модусы Cesare и Cesaro второй фигуры). Если отбросить ослабленные модусы, остаётся 19 правильных модусов силлогизма.

Для оценки правильности силлогизма могут использоваться круги Эйлера, иллюстрирующие отношения между объёмами имён.

Возьмём, для примера, силлогизм:

Все металлы (М) ковки (Р).

Железо (S) – металл (М).

Железо (S) ковко (Р).

Отношения между тремя терминами этого силлогизма (модус Barbara) представляются тремя концентрическими кругами. Эта схема интерпретируется так: если все М (металлы) входят в объём Р (ковких тел), то с необходимостью S (железо) войдёт в объём Р (ковких тел), что и утверждается в заключении «Железо ковко».

Другой пример силлогизма:

Все рыбы (Р) не имеют перьев (М).

У всех птиц (S) есть перья (М).

Ни одна птица (S) не является рыбой (Р).

Отношения между терминами данного силлогизма (модус Cesare) представлены на рисунке. Он истолковывается так: если все S (птицы) входят в объём М (имеющие перья), а М не имеет ничего общего с Р (рыбы), то у S (птицы) нет ничего общего с Р (рыбы), что и утверждается в заключении.

Пример неправильного силлогизма:

Все тигры (М) – млекопитающие (Р).

Все тигры (М) – хищники (S).

Все хищники (S) – млекопитающие (Р).

Отношения между терминами данного силлогизма могут быть представлены двояко, как это показано на рисунке. И в первом, и во втором случаях все М (тигры) входят в объём Р (млекопитающие) и все М входят также в объём S (хищники). Это соответствует информации, содержащейся в двух посылках силлогизма. Но отношение между объёмами Р и S может быть двояким. Охватывая М, объём S может полностью входить в объём Р или объём S может лишь пересекаться с объёмом Р. В первом случае можно было бы сделать общее заключение «Все хищники – млекопитающие», но во втором случае правомерно только частное заключение «Некоторые хищники – млекопитающие». Информации, позволяющей сделать выбор между этими двумя вариантами, в посылках не содержится. Значит, мы не вправе делать общее заключение. Силлогизм не является правильным.

В силлогизме, как и во всяком дедуктивном умозаключении, в заключении не может содержаться информация, отсутствующая в посылках. Заключение только развёртывает информацию посылок, но не может привносить новую информацию, отсутствующую в них.

В обычных рассуждениях нередки силлогизмы, в которых не выражается явно одна из посылок или заключение. Такие силлогизмы называются энтимемами. Примеры энтимем: «Щедрость заслуживает похвалы, как и всякая добродетель», «Он – учёный, поэтому любопытство ему не чуждо», «Керосин – жидкость, поэтому он передаёт давление во все стороны равномерно» и т.п. В первом случае опущена меньшая посылка «Щедрость – это добродетель», во втором – большая посылка «Всякому учёному не чуждо любопытство», в третьем – опять-таки большая посылка «Всякая жидкость передаёт давление во все стороны равномерно».

Для оценки правильности рассуждения в энтимеме следует восстановить её в полный силлогизм.

Глава 10

Доказательство и опровержение

1. Понятие доказательства и его структура

Об И. Ньютоне рассказывают, что, будучи студентом, он начал изучение геометрии, как было принято в то время, с чтения «Геометрии» Евклида. Знакомясь с формулировками теорем, он видел, что они справедливы, и не изучал доказательства. Его удивляло, что люди затрачивают столько усилий, чтобы доказать совершенно очевидное.

Позднее Ньютон изменил своё мнение о необходимости доказательств в математике и других науках и хвалил Евклида как раз за безупречность и строгость его доказательств.

Невозможно переоценить значение доказательств в нашей жизни и особенно в науке. И тем не менее доказательства встречаются не так часто, как хотелось бы. К доказательствам прибегают все, но редко кто задумывается над тем, что означает «доказать», почему доказательство «доказывает», всякое ли утверждение можно доказать или опровергнуть, все ли нужно доказывать и т.п.

Наше представление о доказательстве как особой интеллектуальной операции формируется в процессе проведения конкретных доказательств. Изучая разные области знания, мы усваиваем и относящиеся к ним доказательства. На этой основе мы постепенно составляем – чаще всего незаметно для себя – общее интуитивное представление о доказательстве как таковом, его общей структуре, не зависящей от конкретного материала, о целях и смысле доказательства и т.д.

Изучение доказательства на конкретных его образцах и интересно, и полезно. Но также необходимо знакомство с основами логической теории доказательства, которая говорит о доказательствах безотносительно к области их применения. Практические навыки доказательства и интуитивное представление о нем достаточны для многих целей, но далеко не для всех. Практика и здесь, как обычно, нуждается в теории.

Логическая теория доказательства в основе своей проста и доступна, хотя её детализация требует специального символического языка и другой изощрённой техники современной логики.

Под доказательством в логике понимается процедура установления истинности некоторого утверждения путём приведения других утверждений, истинность которых уже известна и из которых с необходимостью вытекает первое.

В доказательстве различаются тезис – утверждение, которое нужно доказать, основание (аргументы) – те положения, с помощью которых доказывается тезис, и логическая связь между аргументами и тезисом. Понятие доказательства всегда предполагает, таким образом, указание посылок, на которые опирается тезис, и тех логических правил, по которым осуществляются преобразования утверждений в ходе доказательства.

К примеру, нужно доказать тезис «Все металлы проводят электрический ток». Подбираем в качестве аргументов утверждения, которые являются, во-первых, истинными и из которых, во-вторых, логически вытекает тезис. В качестве таких утверждений можно принять, в частности, следующие: «Все вещества, имеющие в своей кристаллической решётке свободные электроны, проводят электрический ток» и «Все металлы имеют в своей кристаллической решётке свободные электроны». Строим умозаключение:

Перейти на страницу:

Александр Ивин читать все книги автора по порядку

Александр Ивин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Логика отзывы

Отзывы читателей о книге Логика, автор: Александр Ивин. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*