Kniga-Online.club
» » » » Роберт Криз - Призма и маятник. Десять самых красивых экспериментов в истории науки

Роберт Криз - Призма и маятник. Десять самых красивых экспериментов в истории науки

Читать бесплатно Роберт Криз - Призма и маятник. Десять самых красивых экспериментов в истории науки. Жанр: Прочая научная литература издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

В своем лекционном курсе и в других книгах Фейнман элегантно описал странную природу поведения квантов, сравнивая три «двухщелевых» эксперимента: один – с использованием пуль (частиц), второй – с использованием воды (волн) и третий – с использованием электронов (того и другого и ни того, ни другого) – чтобы в каждом случае продемонстрировать сходство и различие «путем сравнений и противо-поставлений»149.

Вначале, говорит Фейнман, представьте себе эксперимент, в котором пулемет ведет беспорядочную стрельбу по бронированной стене, в которой проделаны два маленьких отверстия и за которой стоит мишень. У каждого отверстия имеется затвор, который может его полностью закрывать. Величина каждого отверстия такова, что в него только-только может пролететь пуля и затем попасть в мишень. Все пули за редким исключением попадают в мишень в одних и тех же двух местах. Небольшое количество пуль рикошетирует от краев отверстий и отлетает в сторону под тем или иным углом так, что мы не можем точно знать, куда попадет та или иная из них. Затем можно подсчитать число пуль, попавших в определенное место мишени.

Цель эксперимента состоит в том, чтобы измерить вероятность попадания пули в одно конкретное место. Начав стрельбу и проведя измерения, мы сразу же обнаружим, что мишень регистрирует только целые пули – там никогда не будет половинок или частичек от пуль. Таким образом, пишет Фейнман, распределение пуль будет в целых числах представлять определенное количество целых пуль. Также обнаружится, что вероятность отыскания пули в некоем определенном месте, когда оба отверстия 1 и 2 открыты, равна сумме вероятностей того же в том случае, когда названные отверстия открыты по отдельности. Другими словами, на вероятность того, что пуля пролетит сквозь отверстие 1, никак не влияет тот факт, открыто или закрыто отверстие 2150. Можно немного перефразировать сказанное: если при стрельбе по мишени определенный процент выстрелов попадает в «яблочко», этот процент никак не изменится, если рядом установить другую мишень и вести стрельбу одновременно по двум мишеням. Фейнман называет подобное состояние «без интерференции».

А теперь, говорит Фейнман, представьте себе второй эксперимент, на сей раз с резервуаром воды и волновой установкой вместо пулемета. В этом эксперименте у нас также имеется стена с двумя отверстиями, абсорбирующая стенка, или «берег», на другой стороне, который не отражает волны, ударяющие по нему, и передвижной детектор, измеряющий силу движения волны (на самом деле он измеряет высоту или амплитуду волны и возводит это число в квадрат, чтобы получить значение интенсивности). По сути, мы имеем дело с юнговским экспериментом с двумя щелями, только материалом здесь служит вода.

Цель эксперимента состоит в том, чтобы измерить, сколько энергии переносит волна, когда отверстие 1 и отверстие 2 открыты по отдельности и вместе. При включении волновой установки обнаруживается несколько ключевых отличий от предыдущего эксперимента. Во-первых, волны могут быть абсолютно любой величины – они ведь не отдельные тела, подобно пулям, – а их высота может изменяться плавно и непрерывно. Кроме того, интенсивность колебаний в данной точке при двух открытых отверстиях не совпадает с суммой интенсивностей в той же точке, соответствующих случаям, когда они открыты по отдельности. Как известно из эксперимента Юнга, причина этого заключается в том, что волны из двух источников в некоторых местах совпадают по фазе, а в других – не совпадают. Здесь мы имеем эффект «интерференции».

Наконец, в третьем воображаемом эксперименте Фейнман использует электронную пушку, выстреливающую электронами в стену с двумя отверстиями. И снова на противоположной стороне стены имеется «пулепоглотитель» и детектор электронов. Но теперь мы имеем дело с поведением объектов на квантовом уровне, говорит Фейнман, и тут происходит нечто необычное. Как и в первом эксперименте, мы сразу же отмечаем то, что в отличие от колебания поверхности воды электроны считываются детектором по одному и целиком: детектор издает специфический «щелчок», свидетельствующий о попадании электрона. Однако, как и во втором эксперименте, характер распределения электронов при открытых двух отверстиях отличается от суммы соответствующих распределений, когда отверстия открыты по отдельности. В результате мы имеем классическое явление интерференции. Поразительным является то, что электроны ведут себя как волны, проходя сквозь отверстия, но как частицы – «отмечаясь» на детекторе.

Исходя из того, что многие электроны проходят через оба отверстия одновременно, можно предположить, что интерференционное распределение каким-то образом возникает из-за того, что многие из них сталкиваются друг с другом. Но вариант эксперимента с пропусканием электронов по одному доказывает, что это не так. И вот здесь мы приближаемся к «единственной тайне».

Снизим активность электронной пушки так, чтобы она выпускала только по одному электрону за один раз и достаточно медленно, с тем, чтобы за один раз через отверстие проходил только один электрон. Теперь никакие столкновения между электронами невозможны. После включения электронной пушки электроны начинают медленно собираться на противоположной стороне. Поначалу, когда электроны отмечаются детектором, характер их распределения по-прежнему воспринимается как хаотический. Но по мере того как количество собранных данных растет, мы с удивлением отмечаем, что формируется некая стройная картина – по сути интерференционная! Создается впечатление, что каждый электрон проходит через оба отверстия одновременно, подобно волне, но соприкасается с детектором в одном конкретном месте, подобно частице. Каждый электрон интерферирует только с самим собой. Неужели такое возможно? Возможно! И это, по замечанию Фейнмана, «единственная тайна». «Я ничего не скрываю, – пишет он, – я обнажаю природу, ее самые элегантные и сложные формы».

Так как отдельные электроны сложно получить и наблюдать за ними по отдельности с использованием описанного инструментария, физики долгое время полагали, что названный эксперимент невозможно реализовать. Однако же они были абсолютно уверены в том, что произойдет, если такой эксперимент будет проведен, так как существует множество других свидетельств волновой природы электронов. Вот что Фейнман говорил своим студентам:

«Необходимо сразу же отметить, что не следует пытаться провести этот эксперимент… Данный эксперимент никогда не проводился именно таким способом. Проблема заключается в том, что для демонстрации интересующих нас последствий придется изготовить аппарат невероятно маленького масштаба. Представить подобную ситуацию относительно легко, поэтому мы проводим „мысленный эксперимент“. Его возможные результаты известны нам благодаря тому, что уже проведено множество различных экспериментов, в которых выбирались соответствующие масштаб и пропорции для демонстрации описываемых нами результатов».

В начале 1960-х годов, когда Фейнман приводил это объяснение, ему было неизвестно, что развитие технологий в физике приближалось к уровню, при котором станет возможной реальная постановка квантового эксперимента с двумя отверстиями. И этот эксперимент в самом деле был проведен в 1961 году немецким физиком Клаусом Йонссоном.

Йонссон родился в Германии в 1930 году. Когда армии союзников в 1945-м вошли в Гамбург, Йонссон вместе с группой интересовавшихся наукой одноклассников собирал разное оборудование, брошенное отступавшими немецкими войсками. Они сняли с немецкого вездехода батареи и другие электрические детали и стали проводить эксперименты по гальванопокрытию. Их развлечению пришел конец, когда аккумуляторы сели: зарядных устройств у ребят не было.

После войны Йонссон учился в Тюбингенском университете у Готфрида Молленштедта, пионера электронной микроскопии, работавшего в Физическом институте при Тюбингенском университете151. Молленштедт вместе с Генрихом Дюкером изобрел электронную бипризму, которая, по сути, является бипризмой Френеля, приспособленной для электронов (рис. 23). Как упоминалось в главе 6, устройство Юнга с двумя отверстиями и бипризма Френеля представляли собой два различных, но концептуально близких метода разделения светового луча на два пучка волн, интерферирующих друг с другом.

В методике Юнга свет от одного источника разделялся на два излучения от двух отверстий, разделенных небольшим расстоянием. Френель же разделял свет из одного источника, заставляя его проходить одновременно через две стороны треугольной призмы. Электронная бипризма Молленштедта разделяла пучок электронов надвое, помещая у них на пути очень тонкую проволоку под нужным углом. Проволока должна была быть настолько тонкой, что первоначально для этой цели Молленштедт использовал позолоченные паутинки (и потому держал в лаборатории целую коллекцию пауков). Позже он нашел более дешевый и эффективный способ получения проволоки нужного диаметра: в пламени газовой горелки вытягивались кварцевые волокна, которые затем покрывались золотом. Когда волокно бипризмы имело положительный заряд, оно разделяло луч на две составляющие под небольшим наклоном друг к другу, что способствовало возникновению интерференции между ними.

Перейти на страницу:

Роберт Криз читать все книги автора по порядку

Роберт Криз - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Призма и маятник. Десять самых красивых экспериментов в истории науки отзывы

Отзывы читателей о книге Призма и маятник. Десять самых красивых экспериментов в истории науки, автор: Роберт Криз. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*