Лиза Рэндалл - Закрученные пассажи: Проникая в тайны скрытых размерностей пространства.
В 1930 году Вольфганг Паули предложил путь к научному спасению скептиков, который он сам назвал «отчаянной попыткой» — он предположил существование новой электрически нейтральной частицы[95]. Идея Паули состояла в том, что нейтрино тайком крадет часть энергии, выделяющейся при распаде нейтрона. Тремя годами спустя Энрико Ферми дал солидное теоретическое обоснование существования «маленькой» нейтральной частицы, которую он назвал нейтрино[96]. Тем не менее гипотеза о существовании нейтрино представлялась в те времена настолько сомнительным выходом из положения, что ведущий научный журнал Nature отклонил статью Ферми, так как «она содержала размышления, слишком далекие от интересов читателя».
Однако идеи Паули и Ферми были правильными, и в наши дни физики полностью согласны с существованием нейтрино[97]. На самом деле, мы знаем сейчас, что нас непрерывно пронизывают потоки нейтрино, рождающихся вместе с фотонами в ядерных реакциях на Солнце. Ежесекундно сквозь нас проходят триллионы солнечных нейтрино, но их взаимодействия столь слабы, что мы этого никогда не замечаем. Те нейтрино, в существовании которых мы твердо уверены, являются левыми; правые нейтрино либо не существуют, либо очень тяжелы, слишком тяжелы для того, чтобы рождаться, либо взаимодействуют очень слабо. Какая бы из гипотез ни оказалась правильной, правые нейтрино никогда не рождались на ускорителях, и мы их никогда не видели. Поскольку мы значительно более уверены в существовании левых, а не правых нейтрино, я показала на рис. 52, где приведены отдельно левые и правые частицы, только левые нейтрино.
Итак, мы знаем теперь, что слабые взаимодействия действуют только на левые частицы и могут менять тип частиц. Однако, чтобы по-настоящему понять слабые взаимодействия, нам нужна теория, предсказывающая взаимодействия слабых калибровочных бозонов, являющихся переносчиками слабых сил. Физики сразу же поняли, что построить такую теорию не так-то легко. Им потребовалось совершить ряд важных теоретических открытий, прежде чем действительно понять слабое взаимодействие и его следствия.
В конечном итоге проблема состояла в странном свойстве слабого взаимодействия — оно резко спадало на очень малом расстоянии 10-18 м. В этом оно полностью отличается от гравитации или электромагнетизма, для которых, как мы видели в гл. 2, напряженность поля уменьшается с расстоянием обратно пропорционально квадрату расстояния. Хотя при увеличении расстояния гравитация и электромагнетизм становятся все слабее, их интенсивность не спадает так же быстро, как слабое взаимодействие. Фотон переносит электромагнитное взаимодействие на большие расстояния. Почему слабое взаимодействие ведет себя совершенно иначе?
Было очевидно, что для объяснения ядерных процессов типа бета-распада физики должны найти новый тип взаимодействия, но было неясно, каким может быть это взаимодействие. До того, как Глэшоу, Вайнберг и Салам построили свою теорию слабого взаимодействия, Ферми попытался предложить теорию, включавшую новые типы взаимодействия четырех частиц, например, протона, нейтрона, электрона и нейтрино. Это взаимодействие Ферми непосредственно порождало бета-распад без обращения к промежуточному слабому калибровочному бозону. Иными словами, взаимодействие позволяло нейтрону непосредственно превращаться в свои продукты распада — протон, электрон и нейтрино.
Однако даже в то время было ясно, что теория Ферми не может быть правильной теорией, применимой при всех энергиях. Хотя при низких энергиях ее предсказания были правильными, при высоких энергиях они становились полностью неверными, приводя к слишком сильным взаимодействиям. Если предположить (что неверно), что теория Ферми применима к частицам большой энергии, то мы придем к бессмысленным предсказаниям вроде того, что частицы должны взаимодействовать с вероятностью больше единицы. Это невозможно, так как ничто не может случаться чаще, чем всегда.
Хотя теория, основанная на взаимодействии Ферми, была прекрасной эффективной теорией для объяснения взаимодействий при низких энергиях и между достаточно удаленными частицами, физики видели, что им нужно более фундаментальное объяснение процессов типа бета-распада, если они хотят знать, что происходит при высоких энергиях. Казалось, что теория, основанная на передаче взаимодействий слабыми калибровочными бозонами, должна намного лучше работать при высоких энергиях, однако никто не знал, как учесть короткодействующий характер слабого взаимодействия.
Малый радиус оказался следствием ненулевых масс слабых калибровочных бозонов. В физике частиц связи, накладываемые соотношением неопределенностей и специальной теорией относительности, имеют заметные следствия. В конце гл. 6 я обсуждала вопрос о наименьших расстояниях, на которых частица данной энергии, например, характерной энергии слабого взаимодействия или планковской энергии, может быть подвержена действию сил. В силу соотношения специальной теории относительности между энергией и массой (E = mc2) массивным частицам, например слабым калибровочным бозонам, автоматически присущи аналогичные соотношения между массой и расстоянием.
В частности, взаимодействие, осуществляемое путем обмена частицей некоторой массы, становится тем слабее на больших расстояниях, чем меньше масса. (Это расстояние пропорционально также постоянной Планка и обратно пропорционально скорости света[98].) Приведенная в гл. 6 связь между массой и расстоянием говорит нам, что слабый калибровочный бозон, масса которого примерно равна 100 ГэВ, автоматически передает слабое взаимодействие только частицам, находящимся на расстоянии 10-18 м. На больших расстояниях переносимое частицей взаимодействие становится необычайно малым, слишком малым для того, чтобы мы могли это когда-нибудь обнаружить.
Ненулевая масса слабого калибровочного бозона представляется критической для успеха теории слабого взаимодействия. Масса есть причина того, что слабое взаимодействие действует только на очень коротких расстояниях, и настолько слабо, что кажется практически несуществующим на больших расстояниях. В этом отношении слабые калибровочные бозоны отличаются от фотона и гравитона, которые не имеют массы. Так как фотон и гравитон, частица, переносящая гравитационное взаимодействие, переносят энергию и импульс, но не имеют массы, они могут передавать взаимодействия на большие расстояния.
Понятие о безмассовой частице может показаться странным, но с точки зрения физики частиц в нем нет ничего удивительного. Безмассовость частиц говорит нам, что эти частицы распространяются со скоростью света (в конце концов, свет состоит из безмассовых фотонов), кроме того, энергия и импульс таких частиц всегда подчиняется определенному соотношению: энергия пропорциональна импульсу.
С другой стороны, переносчики слабого взаимодействия имеют массу. С точки зрения физики частиц, именно массивный (а не безмассовый) калибровочный бозон представляется странным. Ключевое открытие, проложившее дорогу теории слабого взаимодействия, состояло в понимании происхождения масс слабых калибровочных бозонов, благодаря которым зависимость слабого взаимодействия от расстояния так отличается от этой зависимости для электромагнитного взаимодействия. Механизм, который порождает массы слабых калибровочных бозонов, известный как механизм Хиггса, будет обсуждаться в гл. 10. Как мы увидим в гл. 12, лежащая в основе теория, т. е. точная модель, которая придает частицам их массы, является одной из величайших загадок, с которыми сталкиваются сейчас физики-частичники. Одной из привлекательных черт теории дополнительных измерений является то, что она способна помочь решить эту загадку.
Кварки и сильные взаимодействияМой приятель-физик однажды объяснял одной из моих сестер, что он изучает «сильное взаимодействие, которое называется сильным потому, что оно очень сильное». Хотя сестра не сочла это особенно убедительным, но на самом деле термин для сильного взаимодействия выбран удачно. Это действительно необычайно мощное взаимодействие. Оно настолько сильно связывает вместе составные части протона, что в обычных условиях они никогда не разъединяются. Сильное взаимодействие имеет только косвенное отношение к последующим частям этой книги, так что здесь для полноты я изложу лишь основные факты, касающиеся этого взаимодействия.
Сильное взаимодействие, которое описывается теорией, называемой квантовой хромодинамикой (КХД), является последним из взаимодействий Стандартной модели, которое мы можем объяснить с помощью обмена калибровочными бозонами. Это взаимодействие также было открыто только в прошлом веке. Сильные калибровочные бозоны называются иначе глюонами, так как они передают взаимодействие как некий клей[99], связывающий вместе сильно взаимодействующие частицы.