Kniga-Online.club

Дмитрий Гусев - 200 занимательных логических задач

Читать бесплатно Дмитрий Гусев - 200 занимательных логических задач. Жанр: Прочая научная литература издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

93. В пустую стеклянную бутылку напустили дыма. Как вытряхнуть или вывести дым из бутылки, не наливая в нее воду или какую-нибудь другую жидкость?

94. Корзинка с фруктами весит 11 кг. Фрукты тяжелее корзинки на 10 кг. Сколько весит корзинка, и сколько весят фрукты?

95. Кусок бумаги имеет форму прямоугольника, одна сторона которого равна 4, а другая 9 единицам длины. Как разрезать этот прямоугольник на две равные части, таким образом, чтобы, сложив их, получить квадрат?

96. Два отца и два сына поймали трех зайцев: каждый по одному. Как такое возможно?

97. У Насти дома живут разные животные: все, кроме двух, – попугаи; все, кроме двух, – котята; все, кроме двух, – кролики. Сколько домашних животных у Насти?

98. Собеседник предлагает вам задумать любое трехзначное число. Потом он просит продублировать его, чтобы получилось шестизначное число. Например, вы задумали число 389, продублировав его, имеем шестизначное число – 389389; или 546 – 546546 и т. п. Далее собеседник предлагает вам это задуманное наобум число разделить на 13. «Вдруг получится без остатка», – говорит он. Вы производите деление с помощью калькулятора (можно и без него) и действительно ваше шестизначное число делится на 13 без остатка. Далее он предлагает вам получившийся результат разделить на 11. Вы делите, и опять получается без остатка. И, наконец, собеседник просит вас разделить получившийся результат на 7. Деление не только проходит без остатка, но и дает в результате то самое трехзначное число, которое вы произвольно выбрали сначала. Каким образом это происходит?

99. Как разделить фигуру, состоящую из трех одинаковых квадратов на четыре равные части?

100. Сто школьников одновременно изучали английский и немецкий языки. По окончании курсов они сдавали экзамен, который показал, что 10 школьников не освоили ни тот, ни другой язык. Из оставшихся немецкий сдали 75 человек, а английский – 83. Сколько экзаменовавшихся владеет обоими языками?

101. Каким образом из кружки, ковшика, кастрюли и любой другой посуды правильной цилиндрической формы, наполненной до краев водой, отлить ровно половину, не используя никаких измерительных приборов?

102. Часовая и минутная стрелки иногда совпадают, например в 12 часов ли в 24 часа. Сколько раз они совпадут между 6 часами утра одного дня и 10 часами вечера другого дня?

103. Теплоход доплывает из Нижнего Новгорода до Астрахани за 5 суток, обратный путь он проделывает с той же собственной скоростью за 7 суток. За сколько суток из Нижнего Новгорода до Астрахани доплывет плот?

104. Три курицы несут три яйца за три дня. Сколько яиц снесут 12 куриц за 12 дней?

105. Как написать число 100 с помощью пяти единиц и знаков действий?

106. Давайте подсчитаем, сколько дней в году мы работаем, а сколько отдыхаем. В году 365 дней. Восемь часов в день уходит у каждого на сон – это 122 дня ежегодно. Вычитаем, остается 243 дня. Восемь часов в день занимает отдых после работы, это тоже 122 дня в год. Вычитаем, остается 121 день. По выходным, которых в году 52, никто не работает. Вычитаем, остается 69 дней. Далее, четырехнедельный отпуск – это 28 дней. Вычитаем, остается 41 день. Примерно 11 дней в году занимают различные праздники. Вычитаем, остается 30 дней. Таким образом, мы работаем всего один месяц в году. Верно ли это рассуждение? Если нет, то какая ошибка в нем допущена?

107. В один ряд стоят три наполненных водой стакана и три пустых. Каким образом сделать так, чтобы наполненные и пустые стаканы чередовались, если можно взять в руки только один стакан?

108. Если один рабочий может построить дом за 12 дней, то двенадцать рабочих построят его за один день. Следовательно, 288 рабочих построят дом за один час, 17 280 рабочих построят его за одну минуту, а 1 036 800 рабочих смогут построить дом за одну секунду. Верно ли это рассуждение? Если нет, то в чем заключается допущенная в нем ошибка?

109. Какое слово всегда пишется неправильно? (Задача-шутка).

110. – Ручаюсь, – сказал продавец в зоомагазине, – что этот попугай будет повторять любое услышанное слово. Обрадованный покупатель приобрел чудо-птицу, но, придя домой, обнаружил, что попугай нем, как рыба. Тем не менее, продавец не лгал. Как такое возможно?

111. В комнате есть свеча и керосиновая лампа. Что вы зажжете первым, когда вечером войдете в эту комнату?

112. Как при помощи одной только линейки найти диагональ кирпича?

113. Петр сильно устал и лег спать в 7 часов вечера, поставив механический будильник на 9 часов утра. Сколько часов ему удастся поспать?

114. Отрицание истинного предложения является ложным предложением, а отрицание ложного – истинным. Однако, следующий пример говорит, что это, как будто, не всегда так. Предложение «Это предложение содержит шесть слов» является ложным, поскольку в нем не шесть, а пять слов. Но отрицание «Это предложение не содержит шесть слов» также является ложным, так как в нем как раз шесть слов. Как разрешить это недоразумение?

115. Сколько существует восьмизначных чисел, сумма цифр которых равна 2?

116. Периметр фигуры, составленной из квадратов равен 6. Чему равна ее площадь?

117. Чему равна разность куба суммы квадратов чисел 2 и 3 и квадрата суммы их кубов?

118. Половина от половины числа равна половине. Какое это число?

119. Со временем человек обязательно побывает на Марсе. Саша Иванов – это человек. Следовательно, Саша Иванов со временем обязательно побывает на Марсе. Верно ли это рассуждение? Если нет, то какая ошибка в нем допущена?

120. Для получения оранжевой краски надо смешать 6 частей желтой краски с 2 частями красной. Есть 3 гр. желтой краски и 3 гр. красной. Сколько граммов оранжевой краски можно получить в этом случае?

121. На вопрос, сколько ему лет, Вадим отвечал, что через 13 лет ему будет в четыре раза больше лет, чем 2 года назад. Сколько ему лет?

122. Из 12 спичек составлено 4 квадрата. Каким образом надо убрать две спички, чтобы осталось 2 квадрата?

123. Какой знак надо поставить между числами 5 и 6, чтобы получившееся число было больше 5, но меньше 6?

5 < 5? 6 < 6

124. В футбольной команде 11 игроков. Их средний возраст равен 22 годам. Во время мачта один из игроков выбыл. При этом средний возраст команды стал равен 21 году. Сколько лет выбывшему игроку?

125. – Сколько лет твоему отцу? – спрашивают мальчика.

– Столько же, сколько и мне, – невозмутимо отвечает он.

– Как такое возможно?

– Очень просто: мой отец стал моим отцом только тогда, когда я родился, ведь до моего рождения он не был моим отцом, значит моему отцу столько же лет, сколько и мне.

Верно ли это рассуждение? Если нет, то какая ошибка в нем допущена?

126. В мешке 24 кг гвоздей. Каким образом можно на чашечных весах без гирь отмерить 9 кг гвоздей?

127. Петр лгал с понедельника по среду и говорил правду в другие дни, а Иван лгал с четверга по субботу и говорил правду в другие дни. Однажды они одинаково сказали: «Вчера был один из дней, когда я лгу». Какой день был вчера?

128. Трехзначное число записали цифрами, а потом – словами. Получилось, что все цифры в этом числе разные и возрастают слева направо, а все слова начинаются с одной и той же буквы. Какое это число?

129. В равенстве, составленном из спичек, допущена ошибка. Каким образом надо переложить одну спичку, чтобы равенство стало верным?

130. Во сколько раз увеличится трехзначное число, если к нему приписать такое же число?

131. Если бы не было времени, то не было бы ни одного дня. Если бы не было ни одного дня, то всегда стояла бы ночь. Но если бы всегда стояла ночь, то было бы время. Следовательно, если бы не было времени, оно было бы. В чем заключается причина данного недоразумения?

132. В каждой из двух корзин 12 яблок. Настя взяла несколько яблок из первой корзины, а Маша взяла из второй столько, сколько осталось в первой. Сколько яблок осталось в двух корзинах вместе?

133. У одного фермера восемь свиней: три розовые, четыре бурые и одна черная. Сколько свиней могут сказать, что в этом небольшом стаде найдется, по крайней мере, еще одна свинья такой же масти, как и ее собственная? (Задача-шутка).

134. На двух чашах рычажных весов находятся два одинаковых ведра, наполненные водой. Уровень воды в них одинаков. В одном ведре плавает деревянный брусок. Будут ли весы находиться в равновесии?

Перейти на страницу:

Дмитрий Гусев читать все книги автора по порядку

Дмитрий Гусев - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


200 занимательных логических задач отзывы

Отзывы читателей о книге 200 занимательных логических задач, автор: Дмитрий Гусев. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать

0
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*