Kniga-Online.club
» » » » Лиза Рэндалл - Закрученные пассажи: Проникая в тайны скрытых размерностей пространства.

Лиза Рэндалл - Закрученные пассажи: Проникая в тайны скрытых размерностей пространства.

Читать бесплатно Лиза Рэндалл - Закрученные пассажи: Проникая в тайны скрытых размерностей пространства.. Жанр: Прочая научная литература издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Другой способ объяснения — сказать, что большие энергии для изучения малых расстояний нужны нам потому, что в физических процессах на малых расстояниях участвуют только частицы, волновые функции которых меняются на малых расстояниях. Так же как Вермеер не смог бы написать свои картины с помощью кисти шириной два дюйма, и так же как вы не можете видеть мелкие детали, если у вас плохое зрение, частицы не могут быть чувствительными к физическим процессам на малых расстояниях, если их волновые функции не меняются на очень малых масштабах. Но, согласно де Бройлю, частицы, волновые функции которых включают малые длины волн, обладают большими импульсами. Де Бройль утверждал, что длина волны частицы-волны обратно пропорциональна ее импульсу. Поэтому соотношение де Бройля вынуждает нас заключить, что для анализа физических явлений на малых расстояниях нужны частицы с большими импульсами, а следовательно, и большими энергиями.

Этот вывод имеет важные следствия для физики частиц. Только частицы больших энергий чувствуют явления, связанные с физическими процессами на малых расстояниях. Рассмотрим на двух конкретных примерах, насколько большие энергии подразумеваются.

Физики-частичники часто измеряют энергию в числах, кратных электрон-вольту (сокращенно эВ). Один электронвольт равен энергии, требуемой для движения электрона в поле с разностью потенциалов 1 В (такую разность потенциалов создает слабенькая батарейка). Я буду далее использовать производные единицы гигаэлектронвольт (ГэВ) и тераэлектронвольт (ТэВ); 1 ГэВ равен 1 миллиарду эВ, 1 ТэВ равен 1 триллиону эВ.

Физики-частичники часто находят удобным использовать эти единицы для измерения не только энергии, но и массы. Это можно сделать, так как соотношения между массой, импульсом и энергией в специальной теории относительности показывают, что эти три величины связаны друг с другом скоростью света — константой, значение которой равно с = 299 792 458 м/с. С помощью скорости света можно перевести данную энергию в массу или импульс. Например, знаменитая формула Эйнштейна Е = тс2 означает, что с каждой конкретной энергией связана определенная масса. Так как каждый знает, что переводной коэффициент равен с2, его можно убрать, и выразить все массы в единицах эВ. В таких единицах масса протона равна примерно 1 миллиарду эВ или 1 ГэВ.

Такой перевод одних единиц в другие аналогичен тому, что вы делаете каждый день, говоря, например, кому-то: «Станция в десяти минутах от нас». Вы предполагаете известным конкретный переводной коэффициент. Расстояние может быть равным одному километру, что соответствует десяти минутам ходьбы пешком, или двадцати километрам, что соответствует десяти минутам езды по скоростной дороге. Между вами и вашим собеседником существует негласная договоренность о согласованном переводном коэффициенте.

Эти соотношения специальной теории относительности в сочетании с соотношением неопределенностей определяют минимальный пространственный размер физических процессов, который может исследовать или детектировать волна или частица определенной энергии или массы. Применим эти соотношения к двум очень важным в физике частиц энергиям, которые часто будут появляться в последующих главах (рис. 46).

Первая энергия, известная как характерная энергия слабых взаимодействий, равна 250 ГэВ. Физические процессы при этой энергии определяют ключевые свойства слабого взаимодействия и элементарных частиц, наиболее интересным из которых является механизм приобретения частицами массы. Физики (включая меня) ожидают, что, когда мы исследуем эту область энергии, обнаружатся новые явления, предсказываемые пока что неизвестными физическими теориями, и мы узнаем много нового о фундаментальной структуре материи. К счастью, эксперименты уже близки к исследованию области характерной энергии слабых взаимодействий и вскоре смогут рассказать нам все, что мы хотим знать.

Иногда я буду говорить о характерной массе слабых взаимодействий, которая связана с энергией слабых взаимодействий через скорость света. В более привычных единицах характерная масса слабых взаимодействий равна 10-24 кг. Но, как я уже объясняла, физики-частичники предпочитают говорить о массе в единицах ГэВ.

Связанный с энергией радиус слабых взаимодействий равен 10-18 м. Он определяет размер сферы действия слабого взаимодействия — максимальное расстояние, на котором частицы могут влиять друг на друга за счет сил слабого взаимодействия.

Так как соотношение неопределенностей утверждает, что малые расстояния можно исследовать только с помощью больших энергий, радиус слабых взаимодействий является также минимальной длиной, которую может прощупать частица с энергией 250 ГэВ, т. е. это есть минимальный масштаб, на который могут повлиять физические процессы с такой энергией. Если бы с помощью этой энергии можно было исследовать меньшие расстояния, неопределенность в расстоянии была бы меньше 10-18 м, и соотношение неопределенностей между расстоянием и импульсом было бы нарушено. Работающий в настоящее время ускоритель в Фермилабе[74] и будущий Большой адронный коллайдер (БАК), строительство которого завершается в ЦЕРНе в Женеве, будут исследовать физические процессы вплоть до этого масштаба, и многие модели, которые я буду обсуждать в этой книге, должны иметь при такой энергии наблюдаемые следствия.

Вторая важная энергия, известная как платовская энергия МPl, равна 1019 ГэВ. Эта энергия имеет большое отношение к любой теории тяготения. Например, гравитационная постоянная, входящая в закон тяготения Ньютона, обратно пропорциональна квадрату планковской энергии. Из-за того, что планковская энергия очень велика, гравитационное притяжение двух масс мало.

Кроме того, планковская энергия — наибольшая возможная энергия, для которой можно применять классическую теорию тяготения; выше этой энергии существенной становится квантовая теория гравитации, последовательно описывающая как квантовую механику, так и тяготение. Ниже, при обсуждении теории струн, мы увидим также, что в старых моделях теории струн натяжение струны скорее всего определяется планковской энергией.

Квантовая механика и соотношение неопределенностей утверждают, что когда частицы достигают этой энергии, то с их помощью можно исследовать физические процессы, происходящие на расстояниях порядка планковской длины, равной 10-35 м. Это расстояние невероятно мало, много меньше расстояния, доступного измерению. Но для описания физических процессов, возникающих на столь малых расстояниях, требуется квантовая теория гравитации, и такой теорией может быть теория струн. По этой причине планковская длина, так же как и планковская энергия, являются важными масштабами, которые будут часто появляться в последующих главах.

Бозоны и фермионы

Квантовая механика указывает на важное различие между частицами, разделяя весь мир частиц на бозоны и фермионы. Эти частицы могут относиться к фундаментальным, например, электроны и кварки, или к составным, таким как протон или атомное ядро. Любой объект является либо бозоном, либо фермионом.

Является ли такой объект бозоном или фермионом, зависит от свойства, называемого внутренним спином частицы. Название наводит на определенные образы[75], однако спин частиц не соответствует никакому реальному движению в пространстве. Однако если частица имеет внутренний спин, она взаимодействует с другими так, как будто на самом деле вращается, несмотря на то что на самом деле никакого вращения нет.

Например, взаимодействие электрона с магнитным полем зависит от классического вращения электрона, его реального вращения в пространстве. Однако взаимодействие электрона с магнитным полем зависит также от внутреннего спина электрона. В противоположность классическому моменту импульса, возникающему из-за реального движения в физическом пространстве[76], внутренний спин является свойством частицы. Он фиксирован и обладает определенным значением сейчас и всегда. Например, фотон есть бозон со спином 1 (в единицах h). Это свойство фотона, оно столь же фундаментально, как тот факт, что фотон движется со скоростью света.

В квантовой механике спин квантован. Квантовый спин может принимать значения 0 (т. е. полное отсутствие спина), 1, 2 или любое целое число единиц спина. Объекты, называемые бозонами по имени индийского физика Сатиендры Ната Бозе, имеют внутренний спин, т. е. квантово-механический спин, не зависящий от вращения, принимающий целые значения: бозоны могут иметь внутренний спин, равный 0, 1, 2 и т. д.

Перейти на страницу:

Лиза Рэндалл читать все книги автора по порядку

Лиза Рэндалл - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Закрученные пассажи: Проникая в тайны скрытых размерностей пространства. отзывы

Отзывы читателей о книге Закрученные пассажи: Проникая в тайны скрытых размерностей пространства., автор: Лиза Рэндалл. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*