Kniga-Online.club
» » » » Джефф Форшоу - Квантовая вселенная. Как устроено то, что мы не можем увидеть

Джефф Форшоу - Квантовая вселенная. Как устроено то, что мы не можем увидеть

Читать бесплатно Джефф Форшоу - Квантовая вселенная. Как устроено то, что мы не можем увидеть. Жанр: Прочая научная литература издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Рис. 9.1. Пара электрон-дырка в полупроводнике

Конечно, после этого электрон становится гораздо более мобильным, но мобильность обретает и еще кое-что: в зоне валентности образуется дырка, и она дает возможность маневра электронам из зоны валентности, до того столь же инертным. Как мы могли видеть, подсоединение батареи к этому полупроводнику заставит электрон из зоны проводимости совершить энергетический скачок, вызвав тем самым движение электрического тока. Что случится с этой дыркой? Электрическое поле, созданное батареей, может заставить электрон, находящийся в валентной зоне в каком-то более низком энергетическом состоянии, перепрыгнуть в эту свободную дырку. Теперь дырка заполнена, но появляется дырка «глубже» – на более низком энергетическом уровне в валентной зоне. Когда электроны в валентной зоне перескакивают в свободную дырку, та вращается. Вместо того чтобы отслеживать движение всех электронов в почти заполненной валентной зоне, мы можем отслеживать местоположение дырки, забыв об электронах. Такой оптимизацией подсчета привычно пользуются специалисты по физике полупроводников. Нам она тоже облегчит жизнь.

Приложенное электрическое поле приводит в движение электроны зоны проводимости, создавая ток, и нам хотелось бы знать, что происходит в этом случае с дырками в валентной зоне. Мы знаем, что электроны валентной зоны не могут двигаться, поскольку их почти полностью сдерживает принцип Паули, но под действием электрического поля они чуть сдвигаются, и дырка двигается наряду с ними. Наверное, это противоречит интуиции, так что, если вы не можете смириться с тем, что когда электроны в валентной зоне смещаются влево, то и дырка тоже смещается влево, рассмотрите следующую аналогию. Представьте обычную очередь. Расстояние между людьми составляет 1 метр, но где-то в середине очереди одного человека не хватает. Эти люди – аналог электронов, а отсутствующий человек – аналог дырки. Теперь вообразите, что все эти люди продвинулись на метр вперед, так что каждый из них оказался там, где до него стоял идущий перед ним в очереди. Очевидно, что брешь в очереди тоже продвигается на метр. Так ведут себя и дырки. Кроме этого, можно представить, как вода течет по трубе: пузырек воды будет двигаться в том же направлении, что и струя, и эта «отсутствующая вода» соответствует дырке в валентной зоне.

Но тут, как будто было недостаточно всего остального, появляется дополнительное важное осложнение: мы должны обратиться к той области физики, которая была введена в «неожиданном повороте» в конце предыдущей главы.

Как вы помните, электроны, движущиеся в верхней части заполненной энергетической полосы, получают ускорение от электрического поля в обратную сторону относительно электронов, движущихся в нижней части той же полосы. Это значит, что дырки, которые находятся вверху валентной зоны, двигаются в противоположном направлении по отношению к электронам, находящимся в нижней части зоны проводимости.

Результат таков: мы можем изобразить поток электронов в одном направлении и соответствующий ему поток дырок в другом. Можно считать, что дырка имеет электрический заряд, прямо противоположный заряду электрона. Вспомните, что материал, через который текут наши электроны и дырки, в среднем электрически нейтральный. В любой отдельно взятой области материал не имеет заряда, потому что отрицательный заряд электронов отменяет положительный заряд, переносимый атомными ядрами. Но если мы создадим пару электрон-дырка, переместив электрон из валентной зоны в зону проводимости (так, как мы уже описали), образуется свободно движущийся электрон, который создает избыток отрицательного заряда по сравнению с обычными условиями в этой области материала. Точно так же дырка – это отсутствие электрона, и в месте, где она есть, преобладает положительный заряд. Электрический ток по определению оказывается величиной, с которой движутся положительные заряды, так что электроны вносят в ток отрицательный вклад[42], а дырки – положительный, если движутся в одном и том же направлении. Если, как в случае с нашим полупроводником, электроны и дырки движутся в противоположных направлениях, то они складываются, в итоге получается больший заряд и, следовательно, большая сила тока.

Хотя все это кажется довольно запутанным, результаты ясны как день: мы должны представить, что течение электричества через полупроводник – это течение заряда, а он состоит из электронов в зоне проводимости, движущихся в одном направлении, и дырок в валентной зоне, движущихся в обратную сторону. Эта ситуация отличается от движения тока в проводнике, когда сила тока определяется движением огромного количества электронов в зоне проводимости, а дополнительная сила тока, создаваемая при образовании пар электрон-дырка, пренебрежимо мала. Понять пользу полупроводников – значит осознать, что ток, идущий по полупроводнику, нельзя назвать неконтролируемым движением электронов по проводу, как в проводнике. Это гораздо более сложная комбинация движений электронов и дырок, которая при должной настройке может быть использована для создания микроскопических устройств, способных обеспечить полный контроль за движением тока по цепи.

Следующее изложение – вдохновляющий пример прикладной физики и техники. Идея в том, чтобы сознательно загрязнить кусок чистого кремния или германия для создания некоторых новых доступных энергетических уровней электронов. Эти новые уровни позволят контролировать поток электронов и дырок, идущий через полупроводник, как мы можем с помощью клапанов контролировать движение воды по трубам. Конечно, контролировать ток, идущий по проводу, в принципе легко: достаточно дернуть рубильник. Но мы сейчас не об этом, а о том, как создать более тонкие переключатели и динамически контролировать с их помощью ток в цепи. Эти переключатели – строительные кирпичики логических схем, а из логических схем, в свою очередь, состоят микропроцессоры. Итак, как же все это работает?

Левая часть рис. 9.2 показывает, что происходит, если кусок кремния загрязнен фосфором. Уровень загрязнения можно точно контролировать, что очень важно. Представьте, что в кристалле чистого кремния каждый атом последовательно замещается атомом фосфора. Атом фосфора попадает на место, освобожденное атомом кремния, и единственная разница состоит в том, что у фосфора на один электрон больше, чем у кремния. Этот лишний электрон очень слабо, но связан со своим атомом, он не до конца свободен и занимает энергетический уровень, находящийся сразу под зоной проводимости. При низких температурах зона проводимости пуста, и лишние электроны, появляющиеся из атомов фосфора, располагаются на донорном энергетическом уровне, отмеченном на рисунке.

Рис. 9.2. Новые энергетические уровни, появившиеся в полупроводнике n-типа (слева) и полупроводнике p-типа (справа)

При комнатной температуре пара электрон-дырка в кремнии создается очень редко. Лишь один из примерно триллиона электронов получает достаточно энергии от термических колебаний решетки, чтобы перескочить из валентной зоны в зону проводимости. Напротив, поскольку донорный электрон в фосфоре очень слабо связан с атомом, велика вероятность, что он сможет совершить небольшой скачок с донорного уровня в зону проводимости. Итак, при комнатной температуре при уровне загрязнения выше чем один атом фосфора на триллион атомов кремния, в зоне проводимости будут преимущественно присутствовать электроны, освобожденные атомами фосфора. Это значит, что можно с очень высокой точностью контролировать присутствие мобильных электронов, которые способны проводить электричество, просто варьируя степень фосфорного загрязнения. Поскольку ток в этом случае переносят электроны, свободно движущиеся в полосе проводимости, мы говорим, что такой тип загрязненного кремния называется n-типом (от слова negative – отрицательный).

Правая часть рис. 9.2 показывает, что происходит, если вместо фосфора мы загрязняем кремний атомами алюминия. Атомы алюминия вновь располагаются среди атомов кремния и прекрасно замещают их. Разница в том, что у алюминия на один электрон меньше, чем у кремния. Так в чистом кристалле появляются дырки, в то время как при фосфорном загрязнении появлялись лишние электроны. Эти дырки расположены вблизи от атомов алюминия, и их можно заполнить электронами, которые перескакивают из валентной зоны соседних атомов кремния. «Дырчатый» акцепторный уровень показан на рисунке. Он располагается прямо над валентной зоной, потому что электрон из атома кремния в валентной зоне может легко перескочить в дырку, оставленную атомом алюминия. В этом случае естественно считать, что электрический ток переносится дырками, поэтому такой тип загрязненного кремния называется р-типом (от слова positive – положительный). Как и в предыдущем случае, при комнатной температуре уровень алюминиевого загрязнения может быть не более одной триллионной, прежде чем благодаря движению дырок из алюминия пойдет ток.

Перейти на страницу:

Джефф Форшоу читать все книги автора по порядку

Джефф Форшоу - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Квантовая вселенная. Как устроено то, что мы не можем увидеть отзывы

Отзывы читателей о книге Квантовая вселенная. Как устроено то, что мы не можем увидеть, автор: Джефф Форшоу. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*