Под знаком кванта. - Леонид Иванович Пономарёв
Луи де Бройля занимал все тот же вопрос: «Почему атомы устойчивы? И почему на стационарных орбитах электрон не излучает?» Первый постулат Бора выделял эти орбиты из набора всех мыслимых орбит квантовым условием, которое связывает радиус орбиты г, скорость υ и массу т электрона с целым числом п квантов действия Й = /г/2л:
Де Бройль хотел найти разумные основания для этого условия, то есть стремился объяснить его с помощью других, более привычных понятий, или, другими словами, пытался понять его физический смысл.
Когда ищут объяснение непонятным фактам, как правило, прибегают к аналогиям. Точно так же поступил и де Бройль. В поисках выхода из тупика противоречивых представлений об атоме он догадался, что трудности эти сродни тем, которые возникли при попытках понять противоречивые свойства света. Со светом дело запуталось окончательно в 1923 г., когда Артур Комптон поставил свой знаменитый опыт и доказал, что рассеяние рентгеновских лучей на электронах нисколько не похоже на рассеяние морских волн, зато в точности напоминает столкновение двух бильярдных шаров, один из которых — электрон с массой /и, а другой — световой квант с энергией E — hv. После опыта Комптона и объяснения, данного им самим и Петером Йозефом Вильгельмом Дебаем (1884—1966), уже нельзя было сомневаться в том, что в природе реально существуют световые кванты — фотоны с энергией E = hvy импульсом p — hv/c и длиной волны λ = £/ν, которой эти кванты соответствуют.
Ни де Бройль, ни его современники не могли объяснить, что означают слова: «световые кванты соответствуют световой волне». Однако у них не было оснований подвергать сомнению эксперименты, из которых следовало, что в одних условиях световой луч ведет себя как волна с длиной λ и частотой ν, а в других — как поток частиц — фотонов с энергией E = hv и импульсом p = h/λ (раньше их называли корпускулами). Года через три-четыре все поймут, что это явление — лишь частный случай всеобщего корпускулярно-волнового дуализма в природе, но в то время де Бройлю пришлось находить верную дорогу ощупью.
ВОЛНЫ МАТЕРИИ
Де Бройль верил в единство природы, верил искренне и глубоко — как все великие ученые до него. Поэтому он не мог допустить, что луч света — нечто особенное и ни на что другое в природе не похожее. Де Бройль предположил: не только луч света, но и все тела в природе должны обладать и волновыми, и корпускулярными свойствами одновременно. Поэтому, кроме световых волн и частиц материи, в природе должны реально существовать и корпускулы света, и волны материи.
Такое простое и сильное утверждение нелегко высказать — для этого нужны смелость и вера. Еще труднее его понять — на это способен лишь непредвзятый ум, привычный к абстрактному мышлению. И вряд ли можно это наглядно представить — природа, доступная восприятию наших пяти чувств, не создала зримых образов, которые помогли бы в этих усилиях. В самом деле, при слове «частица» вам может прийти на память все, что угодно — песчинка, бильярдный шар, летящий камень, но вы никогда не вспомните морские волны или колеблющуюся струну. Для нормального человека это настолько несовместимые образы, что объединить их в один кажется противоестественным.
Всякий рассказ о рождении новой физической теории заведомо неточен даже в устах ее автора: такой рассказ, как правило, использует готовые понятия, которых в момент
создания теории не было. У ныне живущих физиков понятие «волна материи» вызывает в сознании некий сложный образ, который ни с чем привычным в окружающем нас мире сравнить нельзя. Образ этот складывается постепенно, при работе с формулами квантовой механики, при решении квантовых задач, и рассказать о нем словами довольно трудно. Понятно, что такого сложного и совершенного образа в 1923 г. у де Бройля не было. Чтобы пояснить его тогдашние рассуждения, мы также используем подходящий заменитель, а именно образ волны, которая возникает при колебаниях струны.
Хорошо известно, что при ударе по натянутой струне она начинает звучать и звук этот зависит от натяжения и от длины струны. Механизм появления звука также хорошо известен: колебания струны передаются воздуху, и мы воспринимаем уже его колебания, а не струны. Однако между ними существует однозначная связь. Например, если мы слышим ноту «ля» первой октавы, то в этот момент струна колеблется с частотой ν = 440 Гц, то есть 440 колебаний в секунду. А поскольку скорость звука в воздухе равна υ = 344 м/с, то длина этих звуковых волн равна λ = υ/ν = 0,78 м.
При колебаниях струны мы слышим основной тон — такое колебание, когда вся струна колеблется как целое. Однако при ее возбуждении возникают и дополнительные колебания — обертоны. Картина колебаний усложняется, на струне появляются «узлы», то есть такие точки, которые остаются неподвижными в процессе колебания. Но всегда строго соблюдается одно условие: на длине струны умещается целое число полуволн λ/2. Для основного тона на длине струны укладывается ровно половина волны λ/2. Для первого обертона — две половины волны, между которыми расположен неподвижный «узел», и т. д.
Дальнейшее — сравнительно просто. Свернем наши струны в кольцо и представим себе, что это орбиты электрона в атоме. Теперь заменим движение электрона по ним колебаниями волн, которые «соответствуют электрону»,— де Бройль был убежден, что это разумно,— и предположим, что движение электрона будет устойчивым тогда — и только тогда! — когда на длине орбиты укладывается целое число n «волн электрона» λ. Отсюда следует простое условие:
2πr = nλ.
Теперь достаточно сравнить это условие с первым постулатом Бора
2πmυr= nh
и найти отсюда «длину волны электрона»:
λ=h/mυ
Вот и все. Это действительно просто. Но это так же просто, как формула Планка E = hv, как постулаты Бора, как закон всемирного тяготения Ньютона, — это гениально просто. Такие открытия просты, ибо требуют самых простых понятий. Но они меняют самые основы нашего мышления. В истории развития человеческого духа их считанное число. И никогда нельзя до конца понять, как они были совершены. Это — всегда чудо, объяснить которое не под