Kniga-Online.club

Феликс Филатов - Клеймо создателя

Читать бесплатно Феликс Филатов - Клеймо создателя. Жанр: Прочая научная литература издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

инвариантные мономеры (i), т. е. мономеры вершин (v) и центров граней (c), взаимозамена которых сохраняет общую нуклонную массу граней, и

пара «внутренних» мономеров (e) каждого ребра, не входящих в группу (i).

Мы нашли, что весьма простое условие, а именно – зеркальная симметрия пар мономеров групп i (v, c) и e относительно оси матрицы, разделяющей первые пурины и пиримидины, при равенстве сумм нуклонных масс v и c и при размещении этих пар во всех четырех столбцах, позволяет сконструировать единственный тетраэдр, который, однако, характеризуется не полной, но билатеральной симметрией (нуклонным равновесием пар) граней при минимальном «размахе» по их нуклонным массам. Числовые значения этого равновесия в десятичной и в пятеричной системах счисления выражаются так:

(626+629 = 627+628)10, или:

(10.001+10.004=10.002+10.003)5.

Пару инвариантных мономеров составляют два мономера v и c, кодируемые одной и той же первой буквой, а пару е составляют внутренние мономеры ребра, также кодируемые одной и той же первой буквой; в обоих случаях используются все четыре основания. Поскольку у тетраэдра шесть пар е, а строк в матрице четыре, то две из этих пар (перекрещивающиеся), хотя и следуют указанному принципу, симметричны лишь в общем, пурин-пиримидиновом, формате – при условии принадлежности S и R к группе вырожденности II: T-R (кодирующие дублеты AC-AG) и S-E (кодирующие дублеты AG-GA или RG-RA). Поразительно, но этот простой принцип, иллюстрируемый приведенной ниже матрицей:

сводит число возможных версий трехмерной модели кода к единственной:

Правда, равновесную по граням модель можно также построить, заменив ребра QH и VD на QV и НD и сохранив, таким образом, симметричный рисунок реберных мономеров в составе матрицы, однако, эта версия потребует сделать формулировку принципа сборки тетраэдра более свободной, поскольку наш тетраэдр характеризуется также полной симметрией по граням аминокислот двух арс-классов:на каждую его грань приходится равное (по 5) число мономеров-аминокислот каждого класса.

Других столь же простых условий сборки тетраэдра с нуклонным равенством граней не существует. Также (естественно) не удается сформировать подобный тетраэдр, используя значения порядковых номеров этих мономеров в качестве их альтернативных параметров. Количественная симметрия имеет место только в отношении номеров инвариантных мономеров сплошной последовательности аминокислот (независимой от арс-класса): суммы номеров мономеров вершин полученного тетраэдра и центров его граней равны (и в случае нумерации по нарастанию нуклонной массы составляют замечательное – в контексте этой и предыдущей глав – десятичное число 37).

Инвариантные мономеры и сами по себе обладают целой серией собственных симметрий по первым, вторым и третьим основаниям своих кодонов, что является следствием их положения в составе матрицы кода. Читатель может самостоятельно организовать и проанализировать таблицы, необходимые для демонстрации этих симметрий.

В формате позиционных номеров аминокислот, принадлежащих к тому или другому арс-классу, отметим, что значения колоночных и построчных суммаций матрицы генетического кода имеют весьма замечательный вид: линейное нарастание сумм порядковых номеров центральных колонок, выраженное двух– или трехзначными инфрмационными символами, в комбинации со сдвиговой для трехзначных чисел (или зеркальной для двузначных) симметрией цифр в крайних колонках, а также в строках, соответствующих первым комплементарным основаниям кодонов:

Читателю предлагается обратить внимание на следующее:

цифровые гомодублеты, как носители информации о симметрии, имеют здесь не меньшее значение, чем гомотриплеты;

в тех случаях, когда значения линейно нарастающих сумм порядковых номеров центральных колонок в той или иной системе счисления не подчеркнуто гомодублетами 11—22—33 или гомотриплетами 111—222—333, цифровые симметрии сумм крайних колонок «комплементарны», так что сумма двух крайних колонок представляет собой следующий гомодублет (44) или гомотриплет (444);

в тех случаях, когда значения сумм колонок или строк имеют неодинаковое число разрядов в той или другой системе счисления, цифровые симметрии сумм крайних колонок невыразительны;

то обстоятельство, что таблица справа (где арс-классы представлены как самостоятельные группы, то есть члены каждой имеют собственную, а не последовательную, нумерацию) демонстрирует симметрии не только по колонкам, но и по строкам, свидетельствует об определенной независимости классов;

наконец, то обстоятельство, что обе таблицы демонстрируют не только числовые, но и цифровые симметрии, как будто поддерживает логику сравнения числового значения и цифрового порядка, которые – имея общее выражение – характеризуют описанный в предыдущей главе виртуальный олигопептид.

Паттерн этих матричных симметрий в значениях порядковых номеров аминокислот сходен с паттерном симметрий матрицы в значениях их нуклонных масс (см. выше):

…………………

И хватит, пожалуй. Автору не хочется больше надоедать Читателю похожими друг на друга таблицами и «интересными» числами. Пора подумать, что все они означают. Сумбур и брызги негромкого, но явственно различимого ритма Музыки Сфер? Сто лет назад Бернард Шоу (одно время музыкальный критик) – словно предчувствуя расцвет сегодняшней глянцевой «звездятины» – заметил, что музыка – это алкоголь осужденных грешников62. Справедливо, конечно, если скорбеть животом в такт второй симфонии Бетховена (http://galicarnax.livejournal.com/25217.html). Но так ли уж нужны стигматы святой Терезе? Так ли они ей желанны?

Однако, ничего не знал Бернард Шоу о генетическом коде, а известный вопрос Уильяма Блейка, странным образом о нем (коде) напоминающем, не мог прийти поэту в голову иначе, как в ассоциации с бенгальским тигром:

What immortal hand or eye,Dare frame thy fearful symmetry?

А нам сегодня – мог, и ничего страшного (fearful) или рокового, судьбоносного (fateful) – достаточно чуть-чуть «буквализировать» великолепный перевод Самуила Маршака:

Кем задуман роковойСоразмерный образ твой?

Заключение и первые отзывы

Глава 96.

Парадокс Ферми (XV)

Сообразительному Читателю уже не нужны пояснения Автора относительно номера этой главы. Читатель уверен, что 96 – это своеобразная кода, возвращение к началу, символ описанных выше цифровых симметрий. Или попытка Автора придать своему нынешнему возрасту не совсем преклонный масштаб, а то – и вовсе уж непреклонный; так сказать, напоминание о том, что и сам Моэм прожил только 91. Или это самообман насчет собственных перспектив, продлеваемых до 96? А может быть, это желание уйти от сочувствия, вызванного упомянутым в первой главе диагнозом? Или равнодушие к тому, чем являются астрологические знаки Зодиака для доверчивой и глупой телезрительницы? Может быть, это приобретенная с возрастом свобода от гормонально-эмоциональных конвульсий и способность разворачивать утомленные привычкой цифры (или что там за ними стоит) «спинами» друг к другу, справедливо полагая, что трагедия пожилого джентльмена именно в том, о чем писал Шоу63, а вовсе не в скорби по ушедшим в прошлое позам и позициям. Именно о них, называя их «красивой жизнью», горевал как-то знакомый Автору пожилой джентльмен, чья красота была «обесточена» ножом Молодого Уролога и навсегда зависла, как убитый трояном писюк. Наверное, в силу возраста джентльмена – или по ассоциации с Шоу, или по каким-то созвучиям – тот Уролог, через руки которого прошло множество подобных, вспоминал позднее свою жертву, как человека с библейской фамилией.

Перейти на страницу:

Феликс Филатов читать все книги автора по порядку

Феликс Филатов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Клеймо создателя отзывы

Отзывы читателей о книге Клеймо создателя, автор: Феликс Филатов. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*