Айзек Азимов - О времени, пространстве и других вещах
Точно так же, когда мы пытаемся проникнуть во внутренний мир атома, квантовые ступеньки становятся гигантскими. Об атомной физике невозможно говорить в терминах физики классической. Даже в первом приближении.
Первым ученым, осознавшим это, был датский физик Нильс Бор. В 1913 году Бор доказал, что, если электрон поглощает энергию, он должен поглотить сразу целый квант, причем для электрона квант — это много. Поэтому после этого он резко меняет свое отношение к остальной части атома.
Бор изобразил электрон вращающимся вокруг атомного ядра по фиксированной орбите. Поглотив квант энергии, он неожиданно оказывается на орбите, расположенной дальше от ядра, причем это перемещение рядовое, без промежуточных этапов.
Поскольку, по Бору, электрон мог двигаться только по определенным орбитам, атом мог поглотить только кванты определенного размера, достаточно большие, чтобы электрон переместился с одной допустимой орбиты на другую. Если же электроны перемещаются в обратном направлении, они излучают энергию квантами. Причем частота излучения определяется размером кванта, который испускается при переходе электрона с одной орбиты на другую.
Так получила разумное объяснение наука спектроскопия. Люди начали понимать, почему каждый элемент (состоящий из атомов одного типа, имеющих один тип энергетических взаимоотношений между электронами этого атома) испускает излучение только определенных частот, будучи раскаленным. Они также поняли, почему вещество, способное поглощать излучение определенных частот, может также испускать излучение тех же частот при других условиях.
Короче говоря, Кирхгоф затронул проблему, но его эмпирические выводы получили теоретическое объяснение много позже.
Первая модель атома, предложенная Бором, была очень простой. Но он не прекращал своих исследований, которые позже были продолжены его последователями, и постепенно представление об атоме менялось, модель также становилась более сложной. Появилась возможность точнее объяснить данные, полученные опытным путем. В 1926 году австриец Эрвин Шрёдингер создал математический аппарат, способный описать движение частиц внутри атома на основе квантовой теории. Его работа получила название квантовой механики, в противоположность существовавшей классической механике, основанной на трех законах Ньютона. Именно квантовая механика является основой современной физики.
Глава 15
Приветствую тебя, незнакомец
В науке, как и везде, существует мода. Проведите необыкновенно успешный эксперимент, и у вас появится дюжина подражателей раньше, чем вы успеете об этом подумать.
Взять хотя бы химический элемент ксенон, открытый в 1898 году Уильямом Рамзаем и Моррисом Уильямом Траверсом. Как и другие элементы этой группы, он был изолирован от жидкого воздуха. О присутствии этих элементов в воздухе никто не подозревал на протяжении века, в течение которого велось активное исследование химического состава воздуха. Исследователи были немало удивлены, обнаружив странного незнакомца. Кстати, название ксенон произошло от греческого слова странный, не знакомый.
Ксенон принадлежит к группе элементов, называемых инертными газами (по причине их химической инертности). Их также называют редкими газами (они редко встречаются) или благородными газами (обособленное положение, которое они занимают по причине своей химической инертности, может показаться признаком особой значительности).
Ксенон — самый редкий из стабильных инертных газов и самый редкий из всех устойчивых химических элементов на Земле. Ксенон встречается только в атмосфере, где составляет 5,3 весовых единиц на миллион. Наша атмосфера весит 5 500 000 000 000 000 (5,5 квадриллионов) тонн, — это означает, что запас ксенона на планете 30 000 000 000 (30 миллиардов) тонн. На первый взгляд это много, но выделить атомы ксенона из огромного количества остальных составляющих частей атмосферы — весьма сложная задача. Поэтому ксенон не является обычным элементом и никогда таким не станет.
Да и в химических лабораториях ксенон вовсе не популярен. Его химические и физические свойства были определены, но что с ними делать дальше? Уже будучи открытым, ксенон долгое время оставался чужаком в семье химических элементов.
Но затем в 1962 году было объявлено о проведении необычного эксперимента с участием ксенона. И с тех пор ни один из номеров специальных химических журналов не обходится без статей о ксеноне.
Что же произошло?
Вы ждете быстрого и краткого ответа? Тогда вы плохо меня знаете. Я, как всегда, выберу свой любимый кружной путь и начну с того, что ксенон является газом.
Стать газом — это дело случая. Ни одно вещество не является газом от природы, просто иногда это диктуется температурными условиями. На Венере вода и аммиак — газы. На Земле аммиак — газ, а вода — жидкость. На Титане ни одно из этих веществ газом не является.
Далее мне потребуется некий критерий, который поможет в дальнейших рассуждениях. Пусть, например, любое вещество, остающееся в газообразном состоянии при -100 °C (-148° F), является Газом (с прописной буквы). Такая температура никогда не достигается на Земле даже в Антарктике, славящейся своими зверскими зимами, поэтому Газов на Земле нет, только газообразное состояния отдельных веществ (или полученных в химических лабораториях).
Тогда почему Газ — это Газ?
Для начала скажу, что любое вещество состоит из атомов или групп атомов, называемых молекулами. Между атомами или молекулами действуют силы притяжения, удерживающие их рядом. Тепло сообщает этим атомам или молекулам определенную кинетическую энергию, которая стремится оторвать их друг от друга, потому что каждый атом и молекула знают, куда им хотелось бы отправиться. (Поймите меня правильно, я вовсе не хочу сказать, что атомы знают, что делают, то есть обладают сознанием. Просто это мой телеологический[9] способ ведения беседы. И пусть телеология запрещена для использования в научных статьях, но… сладок именно запретный плод.)
Силы притяжения между определенными атомами или молекулами обычно постоянны, однако кинетическая энергия изменяется с изменением температуры. Поэтому, если температура поднимется достаточно высоко, любая группа атомов или молекул разлетится по сторонам и вещество станет газом. При температуре выше 6000 °C все известные вещества становятся газами.
Конечно, существует очень немного веществ, межатомные или межмолекулярные силы в которых настолько велики, что для их преодоления необходим нагрев до 6000 °C. У многих веществ они, напротив, настолько слабы, что тепло обычного солнечного дня сообщает достаточно энергии для перехода в газообразное состояние. Пример — обычный медицинский анестетик.
У других веществ силы межмолекулярного притяжения еще слабее, и для их поддержания в газообразном состоянии вполне достаточно тепла при температуре -100 °C. Они являются Газами, о которых я веду речь.
Межмолекулярные или межатомные силы возникают из-за распределения электронов в атомах или молекулах. Электроны распределены среди различных электронных оболочек, согласно системе, в подробности которой я вдаваться не буду. Например, атом алюминия содержит 13 электронов, распределенных следующим образом: 2 — во внутренней оболочке, 8 — в следующей, 3 — в наружной. Таким образом, распределение электронов в атоме алюминия можно обозначить следующим образом: 2,8,3. Внутренняя оболочка может содержать только 2 электрона, следующая — 8 электронов, а каждая из последующих может содержать больше 8 электронов. Если не считать ситуации, когда только внутренняя оболочка содержит электроны, у атомов в стабильном состоянии в наружной оболочке 8 электронов.
Известно шесть элементов, находящихся в состоянии максимальной стабильности.
Другие атомы, где электроны распределены не так удачно, вынуждены пытаться достичь этого, захватывая дополнительные электроны или освобождаясь от имеющихся. В процессе этого они подвергаются химическим превращениям. Однако атомы шести перечисленных выше химических элементов не нуждаются в подобных ухищрениях. Они вполне самодостаточны. У них нет необходимости в перемещении электронов, поэтому они не принимают участия в химических реакциях и являются инертными. (По крайней мере, именно это я заявил бы до 1962 года.)
Атомы семейства инертных газов являются настолько самодостаточными, что эти атомы даже игнорируют друг друга. Между ними существует очень слабое притяжение, и эти вещества остаются газами при комнатной температуре. Все, кроме радона, являются Газами.
Какое-то притяжение между атомами, конечно, существует (в природе нет атомов или молекул, между которыми притяжение отсутствует вообще). Если некоторое время понижать температуру, наступит момент, когда силы притяжения возобладают над разрушительным действием кинетической энергии, и инертные газы станут инертными жидкостями.