Джеймс Глейк - Хаос. Создание новой науки
Система вроде сферического кластера слишком запутанна, чтобы подходить к ней столь прямолинейно, как к вопросу о трех телах. Однако динамику кластера можно изучить, прибегнув к некоторым хитростям. Вполне допустимо, в частности, рассматривать единичные звезды, путешествующие в пространстве, в некотором усредненном гравитационном поле с определенным центром тяготения. Время от времени две звезды подойдут друг к другу достаточно близко, и в таком случае каждое из взаимодействующих тел следует рассматривать уже по отдельности. Астрономы поняли, что сферические кластеры вообще не должны являться устойчивыми: внутри них обычно образуются так называемые бинарные звездные системы, в которых звезды парами перемещаются по небольшим компактным орбитам. Когда с подобной системой сталкивается третья звезда, одна из трех, как правило, получает резкий толчок. Со временем энергия, полученная ею благодаря такому взаимодействию, достигнет уровня, достаточного для того, чтобы звезда набрала скорость, позволяющую вырваться из кластера. Таким образом одно из тел покидает систему, а пространство кластера после этого слегка сжимается. Когда Энон выбрал кластер темой своей докторской диссертации, он произвольно предположил, что сферическое звездное скопление, изменив свой масштаб, останется внутренне подобным. Произведя расчеты, ученый получил потрясающий результат: ядро кластера «сплющится», приобретая кинетическую энергию и стремясь к бесконечно плотному состоянию. Подобное трудно было вообразить. Да и данные исследования кластеров, полученные к тому времени, не подтверждали этот вывод. Однако теория Энона, впоследствии названная гравитационно-термальным коллапсом, постепенно овладевала умами ученых.
Ободренный результатом и готовый к неожиданностям, весьма вероятным в научной работе, астроном занялся более легкими вопросами динамики звезд. Он попытался применить математический подход к давно известным задачам. Посетив в 1962 г. Принстонский университет, Энон впервые получил доступ к компьютеру и, подобно Лоренцу в Массачусетском технологическом институте, начал моделировать орбиты звезд вокруг их центров тяжести. В рамках разумного упрощения галактические орбиты можно рассматривать как орбиты планет, но с одним лишь исключением: центром гравитации здесь является не точка, а трехмерный диск.
Энон пошел на компромисс. «Для большей свободы исследований, — говорил он, — забудем на мгновение, что проблема взята из астрономии». Хотя ученый не упомянул об этом, «свобода исследования» частично означала возможность использования компьютера. Объем памяти его вычислительной машины, весьма тугодумной, был в тысячу раз меньше, чем у персональных компьютеров, появившихся двадцать пять лет спустя. Но, как и другие специалисты, позднее работавшие над проблемами хаоса, Энон полагал, что упрощенный подход себя полностью оправдает. Концентрируясь лишь на самой сути своей системы, он сделал открытия, которые можно было применить и к другим, более сложным системам. Спустя несколько лет расчет галактических орбит все еще считался «забавой теоретиков», тем не менее динамика звездных систем превратилась в объект скрупулезных и дорогостоящих исследований. К ней обратились в основном те, кого интересовали орбиты частиц в ускорителях и стабилизация плазмы в магнитном поле.
За период около 200 миллионов лет звездные орбиты в галактиках обретают три измерения, уже не образуя эллипсов совершенной формы. Реально существующие трехмерные орбиты наглядно представить так же непросто, как и воображаемые конструкции в фазовом пространстве. Это побудило Энона прибегнуть к приему, сравнимому с составлением схем Пуанкаре: ученый вообразил, что на одном конце галактики вертикально расположили плоский лист таким образом, чтобы каждая орбита, подобно лошади, минующей на скачках финишную черту, проходила сквозь него. Энон отмечал точку, в которой орбита пересекала плоскость, и прослеживал движение точки от одной орбиты к другой.
Энон отмечал точки вручную, но многие специалисты, применявшие подобную технику, уже работали с компьютером, наблюдая, как точки вспыхивают на экране, словно фонари, зажигающиеся один за другим с наступлением сумерек. Типичная орбита начиналась с точки в левом нижнем углу изображения, затем, при следующем обороте, точка на несколько дюймов смещалась вправо, новый оборот слегка отклонял ее вправо и вверх и т. д. Поначалу распознать какую-либо форму в этой россыпи было трудно, однако когда количество точек переваливало за 10–12, начинала вырисовываться кривая, напоминающая своими контурами очертания яйца. Последовательно появляющиеся точки фактически образовывали вокруг кривой окружность, но, поскольку они не появлялись на том же самом месте, со временем, когда количество их возрастало до сотни или тысячи, кривая очерчивалась четко.
Описанные орбиты нельзя назвать полностью регулярными, так как они никогда с точностью не повторяются. Однако не будет ошибкой считать их предсказуемыми и далекими от хаотичных, ибо точки никогда не возникают внутри кривой или вне ее. Вернувшись к развернутому трехмерному изображению, можно отметить, что кривые рисуют контур тороида, или бублика, а схема Энона — его поперечное сечение. До поры до времени ученый лишь наглядно изображал то, что его предшественники считали уже доказанным, — периодичность орбит. В обсерватории Копенгагена почти двадцать лет, с 1910 по 1930 г., астрономы тщательно наблюдали и просчитывали сотни орбит, однако их интересовали лишь периодичные. «Я, как и другие в то время, был убежден, что все орбиты должны характеризоваться регулярностью», — вспоминал Энон. Однако, вместе со своим студентом-дипломником Карлом Хейльсом, он продолжал рассчитывать многочисленные орбиты, неуклонно увеличивая энергетический уровень своей абстрактной системы. И вскоре ему открылось нечто совершенно новое.
Сначала яйцеобразная кривая стала изгибаться, принимая более сложные очертания и образуя восьмерку. Затем она разбилась на несколько отдельных форм, напоминавших петлю (каждая орбита изгибалась петлей). Далее, на более высоких уровнях энергии, произошла еще одна внезапная метаморфоза. «Настала пора удивляться», — писали исследователи. Некоторые из орбит обнаружили такую нестабильность, что точки беспорядочно «скакали» по всему листу бумаги. В отдельных местах еще просматривались кривые, а кое-где точки уже не складывались в линии. Изображение впечатляло: очевидный законченный беспорядок, в котором ясно проглядывали остатки стабильности. Все вместе рисовало контуры, наводившие астрономов на мысли о неких «островках» или «гряде островов». Они пытались работать на двух разных компьютерах, пробовали иные методы интегрирования, но результаты упрямо не изменялись, и ученым оставалось только изучать и размышлять.
Рис. 5.5. Орбиты вокруг центра галактики. Пытаясь осмыслить траектории, описываемые звездами в пространстве галактики, М. Энон рассматривал пересечения орбит с плоскостью. Получавшиеся в итоге образы зависели от общего количества энергии в системе. Точки стабильной орбиты постепенно формировали непрерывную кривую, а на других уровнях энергии обнаруживалась сложная структура — смесь хаоса и упорядоченности, представленная зонами разброса точек.
Основываясь на собственных числовых данных, Энон и Хейльс предположили наличие глубокой структуры в полученных изображениях. Они выдвинули гипотезу, что при сильном увеличении появится все больше и больше мелких островков и, возможно, так будет продолжаться до бесконечности. Ощущалась острая необходимость в математическом доказательстве. «Однако рассмотрение вопроса с точки зрения математики казалось не таким уж легким».
Энон обратился к другим вопросам, однако четырнадцать лет спустя, узнав о странных аттракторах Давида Руэлля и Эдварда Лоренца, астроном заинтересовался ими. В 1976 г. он уже работал в обсерватории Ниццы, расположенной высоко над уровнем Средиземного моря, на Большом Карнизе, и там услышал рассказ заезжего физика об аттракторе Лоренца. Гость, по его словам, пытался с помощью различных уловок прояснить изящную «микроструктуру» аттрактора, не добившись, впрочем, ощутимого успеха. Энон решил, что займется этим, хотя диссипативные системы и не входили в сферу его интересов («иногда астрономы относятся к ним с опаской — уж слишком они беспорядочны»).
Ему показалось разумным сконцентрироваться только на геометрической сущности объекта исследования, абстрагируясь от его физического происхождения. Там, где Лоренц и другие ученые применяли дифференциальные уравнения, описывающие непрерывные изменения в пространстве и времени, Энон использовал разностные, которые можно было рассматривать во времени раздельно. По его глубокому убеждению, ключом к разгадке являлись повторяющиеся операции растягивания и свертывания фазового пространства — те самые, что имитируют действия кондитера, который раскатывает тесто для пирожных, складывает его, затем, вновь раскатав, опять складывает, формируя таким образом хрупкую многослойную структуру. Энон, изобразив овал на листе бумаги и решив растянуть его, избрал для этой операции алгоритм, согласно которому каждая точка овала смещалась в новое положение на фигуре, которая аркой поднималась над центром. Выполняемая процедура была похожа на построение карты — точка за точкой овал превращался в «арку». Затем Энон начал вторую операцию — на сей раз сжатие, которое сдвигало внутрь бока арки, делая ее уже. А третье преобразование вернуло узкой фигуре ее прежние размеры, и она точно совпала с первоначальным овалом. Для целей вычисления все три построения могли быть объединены в одной-единственной функции.