Лиза Рэндалл - Закрученные пассажи: Проникая в тайны скрытых размерностей пространства.
Используя рассуждения, основанные на классической физике, Бор вычислил энергию электронов, подчинявшихся его гипотезе квантования. Зная эти энергии, он предсказал энергии, а следовательно, и частоты фотонов, которые испускает или поглощает атом водорода, обладающий одним электроном. Предсказания Бора оказались правильными, и поэтому его гипотеза квантования стала весьма правдоподобной. Именно это убедило ученых, среди которых был и Эйнштейн, что Бор должен быть прав.
Квантованные световые пакеты, которые могут испускаться или поглощаться и тем самым изменять орбиты электронов, можно сравнить с длинами веревок, протянутых между окнами многоэтажного здания в нашем предыдущем примере. Если каждый кусок веревки имеет точно ту длину, которая нужна, чтобы перебраться с вашего этажа на любой другой четный этаж, и если открыты только окна на четных этажах, то веревка позволит меняться этажами, но только с четными номерами. Аналогично, длины волн спектральных линий могут принимать только определенные значения, равные разностям энергий электронов, занимающих дозволенные орбиты.
Несмотря на то что Бор не дал объяснения своему условию квантования, он оказался безусловно прав. Были измерены длины волн многих спектральных линий, и всех их можно было воспроизвести с помощью гипотезы Бора. Если такое согласие считать случайным совпадением, это можно рассматривать как чудо. В конце концов квантовая механика подтвердила гипотезу Бора.
Отход от частицКак бы ни были важны правила квантования, квантово-механическая связь между частицами и волнами стала укрепляться только после исследований французского физика герцога Луи де Бройля, австрийца Эрвина Шрёдингера и немца по происхождению Макса Борна.
Первым ключевым шагом от случайного блуждания по тропам старой квантовой теории к выходу на дорогу истинной квантово-механической теории было замечательное предложение де Бройля перевернуть гипотезу квантования Планка с ног на голову. В то время как Планк связывал кванты с волнами излучения, де Бройль, как и Бор, постулировал, что частицы также ведут себя как волны. Гипотеза де Бройля состояла в том, что частицы должны проявлять волновые свойства, и эти волны определяются импульсом частицы. (При малых скоростях импульс частицы равен произведению ее массы и скорости. При всех скоростях импульс указывает, каким образом нечто реагирует на приложенную силу. Хотя при релятивистских скоростях импульс является более сложной функцией массы и скорости, обобщение импульса, применимое при больших скоростях, также указывает, каким образом нечто реагирует на действие силы при релятивистских скоростях.)
Де Бройль предположил, что частица с импульсом р связана с волной, длина которой обратно пропорциональна импульсу, т. е. чем меньше импульс, тем больше длина волны. Кроме того, длина волны пропорциональна постоянной Планка h [64]. Идея, лежавшая в основе гипотезы де Бройля, состояла в том, что бурно колеблющаяся волна (длина волны которой мала) переносит больший импульс, чем волна, колеблющаяся как в летаргическом сне (с большой длиной волны). Меньшим длинам волн соответствуют более быстрые осцилляции, которые де Бройль сопоставил с большими импульсами.
Если вы ошарашены существованием такой частицы-волны, именно так и должно быть. Когда де Бройль впервые ввел понятие о своих волнах, никто не знал, что это такое. Макс Борн предложил удивительную интерпретацию: волна есть функция координаты, и квадрат этой функции определяет вероятность обнаружения частицы в каком-то месте пространства[65]. Борн назвал эту функцию волновой функцией. Идея Макса Борна заключалась в том, что невозможно зафиксировать положение частиц, и его можно описывать только с помощью вероятностей. Это огромный шаг в сторону от классических представлений. Это означает, что вы не можете знать точное местоположение частицы. Вы можете только определить вероятность ее обнаружения в каком-то месте.
Однако несмотря на то, что квантово-механическая волна описывает только вероятности, сама квантовая механика предсказывает точную эволюцию этой волны во времени. Задавая значения волны в любой данный момент времени, можно определить ее значения в любой последующий момент. Шрёдингер написал волновое уравнение, описывающее эволюцию волны, связанной с квантовомеханической частицей.
Но что означает эта вероятность обнаружения частицы? Идея представляется загадочной — в конце концов, такого понятия, как доля частицы, не существует. Утверждение, что частицу можно описывать волной, было (и в определенном смысле остается) одним из самых удивительных свойств квантовой механики, в частности, потому что известно, что частицы часто ведут себя как бильярдные шары, а не как волны. Интерпретации на языке частиц и волн кажутся несовместимыми.
Разрешение кажущегося парадокса тесно связано с тем, что с помощью только одной частицы вы никогда не установите ее волновую природу. Когда вы детектируете отдельный электрон, вы видите его в некотором определенном месте. Чтобы отобразить всю волну, вам требуется либо множество тождественных электронов, либо многократное повторение одного и того же эксперимента. Даже несмотря на то что каждый электрон связан с волной, с помощью одного электрона можно измерить только одно число. Но если вы могли бы подготовить большую совокупность тождественных электронов, вы обнаружили бы, что доля электронов в каждом месте пропорциональна вероятности, которую приписывает электрону квантовая механика.
Волновая функция отдельного электрона говорит нам о вероятном поведении многих тождественных электронов, описываемых одной и той же волновой функцией. Любой отдельный электрон будет обнаружен только в одном месте. Но если имеется много тождественных электронов, их распределение по разным местам будет подобно волне. Волновая функция определяет вероятность попадания электрона в одно из этих мест.
Можно провести аналогию с распределением населения по росту. Каждый индивидуум имеет свой рост, но распределение говорит нам о вероятности того, что индивидуум имеет определенный рост. Аналогично, если один электрон ведет себя как частица, много электронов вместе будут иметь распределение по положениям, схематически изображаемое волной. Различие состоит в том, что отдельный электрон, тем не менее, связан с этой волной.
На рис. 43 я набросала пример функции вероятности для электрона. Эта волна изображает относительную вероятность обнаружения электрона в конкретном месте. Нарисованная мной кривая принимает определенное значение в каждой точке пространства (или, скорее, на линии, так как бумага плоская, и я вынуждена изображать только одно измерение пространства). Если бы я могла сделать много копий этого электрона, я могла бы совершить серию измерений положения электрона. Тогда я обнаружила бы, что количество раз, когда я находила электрон в определенной точке, было бы пропорционально этой функции вероятности. Большим значениям соответствовало бы то, что электрон с большей вероятностью был бы найден в этой точке, меньшим значениям — что он был бы найден в этой точке с меньшей вероятностью. Волна отражает кумулятивный эффект многих электронов.
Даже несмотря на то, что вы отобразили волну с помощью многих электронов, уникальной особенностью квантовой механики является то, что отдельный электрон все равно тоже описывается волной. Это означает, что вы никогда
не можете ничего предсказать об электроне с определенностью. Если вы измеряете положение электрона, вы обнаруживаете его в определенном месте. Но пока вы не совершите это измерение, вы можете только предсказать, что электрон с определенной вероятностью должен находиться где-то в окрестности. Вы не можете точно сказать, где он остановится.
Корпускулярно-волновой дуализм обнаруживается в знаменитом эксперименте с двумя щелями, на который ссылается неизвестный собеседник Электры в начале этой главы. До 1961 года, когда немецкий физик Клаус Йонссон реально осуществил этот эксперимент в лаборатории, опыт с двумя щелями был скорее мысленным экспериментом, использовавшимся физиками для уяснения смысла и следствий поведения волновой функции электрона. Экспериментальная установка состоит из источника электронов, который посылает электроны сквозь барьер, в котором прорезаны две параллельные щели (рис. 44). Электроны проходят через щели, попадают на расположенный за барьером экран и регистрируются.
Подразумевалось, что этот эксперимент будет подобен эксперименту, выполненному в начале XIX века и продемонстрировавшему волновую природу света. В том эксперименте британский физик, врач и египтолог[66] Томас Юнг направил монохроматический свет сквозь две щели и наблюдал волновую картину, созданную светом на экране за щелями. Опыт Юнга продемонстрировал, что свет ведет себя как волна. Смысл повторения такого же эксперимента с электронами состоял в том, чтобы увидеть, как можно было бы наблюдать волновую природу электрона.