Айзек Азимов - Земля и космос. От реальности к гипотезе
Возможно ли это?
Да, возможно, если мы решим, что периоды в Периодической системе могут иметь не одинаковую длину (как считали некоторые поначалу), а увеличиваться по направлению к концу таблицы.
К примеру, во времена Менделеева в первом периоде имелся только один элемент, водород (H), тогда как во втором и третьем периодах было по семь элементов. Через одно поколение, когда были открыты инертные газы, оказалось, что в первом периоде находятся уже два элемента, а во втором и третьем периодах по восемь (с тех пор здесь изменений не было). Тогда почему в следующих периодах нельзя увеличить число элементов до двадцати, тридцати и даже больше?
В самом деле, во времена Менделеева было известно не менее девяти элементов с атомными массами, которые были между атомными массами кальция (Ca) и галлия (Ga); эти элементы словно заполняли большой зазор между этими массами. Аналогично девять элементов заполняли зазор между стронцием (Sr) и индием (In).
Проблема состоит в том, что валентность уже в отличие от положения с таблицей 1 не является первостепенным и определяющим фактором в этом зазоре. Элементы этого зазора расположены между элементом с валентностью 2 и элементом с валентностью 3 — от кальция (Ca) до галлия (Ga) в первом случае и от стронция (Sr) до индия (In) во втором, и, поскольку они осуществляют что-то вроде перехода от 2 до 3, их можно назвать транзитными элементами. В этой главе я буду называть элементы в таблице 1 валентными элементами.
Размещая в таблице транзитные элементы, мы можем частично руководствоваться атомными весами, частично — менее четко обозначенными валентными свойствами и частично другими химическими свойствами. Делая это, мы можем взять восемнадцать известных элементов первых двух промежутков (которые были известны к 1869 году) и выстроить их так, как показано в таблице 2.
К такому расположению трудно придраться. К примеру, ясно, что серебро (Ag) должно быть справа от меди (Cu) и что кадмий (Cd) должен быть справа от цинка (Zn), если исходить в первую очередь из основных химических свойств. Аналогично и с другими элементами. Только в указанном порядке свойства элементов соответствуют свойствам своих соседей, и у них даже атомные массы расположены по порядку, за исключением кобальта (Со) и никеля (Ni), у которых для того, чтобы сохранить последовательность химических свойств, атомные массы необходимо поменять местами. Но и в этом случае атомные массы находятся столь близко друг к другу, что подобная перестановка особенно картины не нарушает (это третий — и последний — случай перестановки в Периодической системе элементов по их атомным массам).
Таблица 2
Переходные элементыНо в нашей таблице 2, в которой представлены четвертый и пятый периоды, есть два незанятых места. Одно из них оставлено слева от иттрия (Y), а другое — справа от марганца (Mn). Менделеев предсказал, что слева от иттрия (Y) должен располагаться новый элемент (уже третий из предсказанных им). Он назвал этот элемент эка-бор, поскольку в первой версии таблицы он оставил пустое место справа от бора (В). Менделеев указал и свойства будущего элемента.
Эта ячейка была заполнена в 1879 году, когда был обнаружен скандий (см. главу 11). Его символ Sc; его атомная масса очень удачно вписалась между кальцием (Ca) и титаном (Ti).
Ячейку справа от марганца (Mn) оказалось заполнить не столь легко. Элемент, который подошел сюда, был обнаружен только в 1937 году. Его назвали технецием (Tc, атомная масса 99). В результате промежуток в атомных массах транзитных элементов казался практически заполненным (если брать в расчет по десять элементов подряд в четвертом и пятом периодах, считая и пустые ячейки). Атомные массы в среднем разнились на 2,6, в то время как в среднем разница для валентных элементов составляла 2,5.
Но можно ли было, руководствуясь разницей в атомных массах (и во вторую очередь валентностью), с уверенностью сказать, что в каждой из двух серий транзитных элементов по одиннадцать элементов, и только? Может быть здесь двенадцатый элемент? Предположим, к примеру, что между с и d в каждой из двух серий отсутствует по элементу. Если такого элемента нет между с и d только в одной серии, то по элементу другой серии мы легко определим пустое место (к примеру, пустое место слева от иттрия в таблице 1). Но если в обеих сериях мы не знаем элементы, то их существование мы не сможем даже предположить (как произошло в случае с инертными газами, поскольку все эти элементы были неизвестны и об их существовании не подозревали. Как только один из них был открыт, сразу возникли пустующие ячейки в таблице; неизвестные элементы начали искать и вскоре обнаружили).
В пользу того, что правильным числом для транзитных элементов является 10, служит тот факт, что общее количество элементов в периодах четвертом и пятом, валентных и переходных, равно 18, и это выявляет интересную закономерность. Она заключается в следующем: общее число элементов в первом периоде равно 2 × 12 = 2; общее число в периодах втором и третьем равно 2 × 22 = 8; и общее число в периодах 4 и 5 равно 2 × 32 = 18.
Эта зависимость выглядит очень заманчивой, и у людей вроде меня, с любовью к числам, сразу возникает вопрос: но почему элементы столь точно подчиняются этой закономерности? В XIX столетии не было теории, которая бы объяснила ее, и потому это, возможно, просто совпадение, которое могло привести к неверным выводам.
По этой причине химики не могли быть уверены, и Периодическая система, хотя и считалась весьма удобной, оставалась под сомнением.
Но перейдем к третьей серии транзитных элементов — тех, которые должны были послужить мостом между элементами с особенно значительными атомными весами — барием (Ba) и таллием (Tl). Во времена Менделеева здесь было известно одиннадцать элементов. Если мы попытаемся связать их с двумя другими сериями транзитных элементов по схеме от а до j, то получим таблицу 3.
Таблица 3
Переходные элементыЭлементы, показанные в таблице 3, несомненно, согласуются с элементами из таблицы 2. Таким образом, золото (Au) ясно стоит в своей позиции i справа от меди (Cu) и серебра (Ag) — и остальные приведенные в таблице элементы стоят на соответствующих местах.
Однако здесь есть две пустые ячейки. В позиции b должен присутствовать какой-то элемент справа от циркония (Zr) — и в 1923 году этот элемент был открыт. Его назвали гафнием (Hf, атомная масса 178,5), он был найден в циркониевой руде. Элемент прекрасно вписался в свое место — пожалуй, даже слишком прекрасно. Открытие гафния заняло много времени не потому, что элемент был очень редким, а потому, что он очень походил на цирконий по своим свойствам, так что было трудно отделить его от пятидесяти более распространенных близнецов.
Пустое место в ячейке e было заполнено в 1925 году с открытием рения (Re, атомная масса 186,2).
В третьей транзитной серии не было открыто ни одного элемента, который бы показывал на существование неизвестных ранее пустот в первой или второй транзитной серии. Это свидетельствовало в пользу предположения, что в каждой из этих первых двух серий существует по десять элементов.
Но даже после открытия гафния (Hf) можно заметить, что существует внушительный пробел в атомных массах между атомными массами гафния и лантана (La) — пробел в 39,6. Этот пробел существует между элементами a и b шестого периода — но столь же большого пробела нет в соответствующих ячейках четвертого и пятого периодов. В пробеле шестого периода есть место для целого ряда элементов.
Я раньше говорил, что во времена Менделеева было известно одиннадцать элементов с атомными весами, лежащими между атомными весами бария (Ba) и таллия (Tl). Таблица 3 имеет только восемь из них. Что с тремя другими?
Эти три других имеют атомные веса, которые действительно попадают в возникший после открытия гафния зазор между лантаном (La) и гафнием (Hf), и это церий (Ce), эрбий (Er) и тербий (Tb).
Это три редкоземельных элемента, о которых я говорил в предыдущей главе. Два других были известны во времена Менделеева: лантан (La) и иттрий (Y) — и вскоре был открыт еще один, скандий (Sc). Скандий, лантан и иттрий, однако, соответствуют строке a в четвертом, пятом и шестом периодах и являются обычными переходными элементами. Только церий, эрбий и тербий являются элементами, которые должны быть помещены в этот промежуток в шестом периоде. К 1907 году было определено еще десять редкоземельных элементов с атомными весами, которые позволили расположить эти элементы в этом интервале. Список всех тринадцати представлен в таблице 4.