Физика для всех. Молекулы - Китайгородский Александр Исаакович
Все без исключения тела под действием небольших сил ведут себя упруго. Однако предел упругому поведению наступает у одних тел раньше, у других значительно позже. Например, у таких мягких металлов, как свинец, предел упругости наступает уже, если подвесить к концу проволоки миллиметрового сечения груз 0,2-0,3 кгс. У таких твердых материалов, как сталь, этот предел примерно в 100 раз выше, т. е. лежит около 25 кгс.
По отношению к большим силам, превосходящим предел упругости, разные тела можно грубо разделить на два класса - такие, как стекло, т. е. хрупкие, и такие, как глина, т. е. пластичные.
Если прижать палец к куску глины, он оставит отпечаток, в точности передающий даже сложные завитушки рисунка кожи. Молоток, если им ударить по куску мягкого железа или свинца, оставит четкий след. Воздействия нет, а деформация осталась - ее называют пластической или остаточной. Таких остаточных следов не удастся получить на стекле: если упорствовать в этом намерении, то стекло разрушится. Столь же хрупки некоторые металлы и сплавы, например чугун. Железное ведро под ударом молота сплющится, а чугунный котелок расколется. О прочности хрупких тел можно судить по следующим цифрам. Чтобы превратить в порошок кусок чугуна, надо действовать с силой около 50-80 кгс на квадратный миллиметр поверхности. Для кирпича эта цифра падает до 1,5-3 кгс.
Как и всякая классификация, деление тел на хрупкие и пластичные в достаточной степени условно. Прежде всего хрупкое при малой температуре тело может стать пластичным при более высоких температурах. Стекло можно превосходно обрабатывать, как пластический материал, если нагреть его до температуры в несколько сот градусов.
Мягкие металлы, как свинец, можно ковать холодными, но твердые металлы поддаются ковке лишь в сильно нагретом, раскаленном виде. Повышение температуры резко увеличивает пластические свойства материалов.
Одной из существенных особенностей металлов, которые сделали их незаменимыми конструкционными материалами, является их твердость при комнатных температурах и пластичность при высоких: раскаленным металлам легко можно придать требуемую форму, а при комнатной температуре изменить эту форму можно лишь очень значительными силами.
Существенное влияние на механические свойства оказывает внутреннее строение материала. Понятно, что трещины и пустоты ослабляют видимую прочность тела и делают его более хрупким.
Замечательна способность пластически деформируемых тел упрочняться. Одиночный кристалл металла, только что выросший из расплава, очень мягок. Кристаллы многих металлов настолько мягки, что их легко согнуть пальцами, но ... разогнуть такой кристалл не удастся. Произошло упрочнение. Теперь этот образец удастся пластически деформировать лишь существенно большей силой. Оказывается, пластичность есть не только свойство материала, но и свойство обработки.
Почему инструмент готовят не литьем металла, а ковкой? Причина понятна: металл, подвергшийся ковке (или прокату, или протяжке), много прочнее литого. Сколько бы ни ковать металл, мы не сумеем поднять его прочность выше некоторого предела, который называют пределом текучести. Для стали этот предел лежит в интервале 30-50 кгс/мм2.
Эта цифра означает следующее. Если на проволоку миллиметрового сечения подвесить пудовую гирю (ниже предела), то проволока начнет растягиваться и одно временно упрочняться. Поэтому растяжение быстро прекратится - гиря будет спокойно висеть на проволоке. Если, же на такой проволоке подвесить двух-трех пудовую гирю (выше предела текучести), то картина будет иной. Проволока будет непрерывно тянуться (течь), пока не разорвется. Еще раз подчеркнем, что механическое поведение тела определяется не силой, а напряжением. Проволока сечением в 100 мкм2 будет течь под действием груза 30-50*10-4 кгс, т. е. 3-5 гс.
Дислокации
Доказывать, что пластическая деформация - явление, имеющее огромное значение для практики, значит ломиться в открытую дверь. Ковка, штамповка, получение металлических листов, вытягивание проволок - все это явления, имеющие одну природу.
Мы ничего не могли бы понять в пластической деформации, если бы считали, что кристаллиты, из которых построен металл, являются идеальными осколками пространственных решеток.
Теория механических свойств идеального кристалла была создана еще в начале нашего века. Она расходилась с опытом примерно в тысячу раз. Если бы кристалл был идеальным, то его прочность на разрыв должна была бы быть на много порядков выше наблюдаемой и пластическая деформация требовала бы огромных усилий.
Гипотезы зародились ранее, чем накопились факты. Исследователям было очевидно, что единственным выходом, позволяющим примирить теорию и практику, является допущение о наличии у кристаллитов дефектов. Но, конечно, о характере этих дефектов можно было делать самые различные предположения. Лишь тогда, когда физики вооружились тончайшими методами исследования строения вещества, картина стала проясняться. Оказалось, что идеальный кусок решетки (блок) имеет размеры порядка нескольких миллионных долей сантиметра. Блоки дезориентированы в пределах секунд или минут дуги.
К концу двадцатых годов скопилось много фактов, которые привели к важному утверждению, что главным (хотя и не единственным) дефектом реального кристалла является закономерное смещение, получившее название дислокации. Простая дислокация иллюстрируется модельным рис. 6.6. Как видите, сущность дефекта заключается в том, что в кристалле существуют места, содержащие как бы одну "лишнюю" атомную плоскость. Штриховая линия в середине кристалла на рис. 6.6,а разделяет два блока. Верхняя часть кристалла сжата, а нижняя - растянута. Дислокация быстро рассасывается, как это показано на рис. 6.6, б, изображающем вид на левый рисунок "сверху".
Рис. 6.6
Другие дислокации, которые часто встречаются в кристаллах, называются спиральными. Их схемы показаны на рис. 6.7. Здесь решетка разбита на два блока, один из которых своей частью как бы соскользнул на один период по отношению к соседнему. Наибольшие искажения сосредоточены около оси. Область, примыкающая к этой оси, и называется спиральной дисклока-цией.
Мы лучше поймем, в чем сущность искажения, если рассмотрим схему на том же рисунке, изображающую две соседние атомные плоскости по одну и другую сторону плоскости разреза (рис. 6.7, б). По отношению к трехмерному рисунку это вид на плоскости справа. Ось спиральной дислокации та же, что и на трехмерном рисунке. Сплошными линиями показана плоскость правого, пунктирными - левого блока. Черные точки расположены к читателю ближе, чем белые. Как видно из схемы, спиральная дислокация представляет собой иной тип искажения, отличный от простого. Лишнего ряда атомов здесь нет. Искажение состоит в том; что вблизи "оси дислокации атомные ряды меняют своих ближайших соседей, а именно изгибаются и подравниваются к соседям, находящимся этажом ниже.
Рис. 6.7
Почему эта дислокация называется спиральной? Представьте себе, что вы шагаете но атомам (предварительно уменьшившись до субатомного размера) и поставили перед собой цель обойти кругом ось дислокации. Нетрудно видеть, что, начав свое путешествие с самой нижней плоскости, вы после каждого оборота будете попадать этажом выше и в конце концов выйдете на верхнюю поверхность кристалла так, как если бы вы шли по спиральной лестнице. На нашем рисунке подъем снизу происходил против часовой стрелки. Если бы сдвиг блоков был обратным, то путешествие происходило бы по часовой стрелке.
Теперь мы подошли к ответу на вопрос о том, как происходит пластическая деформация,
Предположим, что мы хотим сдвинуть верхнюю половинку кристалла по отношению к нижней на одно межатомное расстояние. Вы видите, что для этого придется перекатить друг через друга все ряды атомов, расположенные в плоскости сдвига. Совершенно иначе обстоит дело при действии силы сдвига на кристалл с дислокацией.