Kniga-Online.club

Стивен Вайнберг - Первые три минуты

Читать бесплатно Стивен Вайнберг - Первые три минуты. Жанр: Прочая научная литература издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Как же быть с более высокими температурами, когда в больших количествах имелись адроны и антиадроны? Есть два совершенно различных ответа, отражающих существование двух весьма различающихся научных школ в отношении природы адронов.

Согласно одной школе, на самом деле не существует такой вещи, как «элементарный» адрон. Каждый адрон столь же фундаментален, как и любой другой, — имеются в виду не только стабильные или почти стабильные адроны вроде протона или нейтрона и не только умеренно нестабильные частицы вроде пи-мезонов, К-мезона, эта-мезона и гиперонов, живущие достаточно долго для того, чтобы оставить измеримые треки в фотопленках или в пузырьковых камерах, но даже полностью нестабильные «частицы» вроде ро-мезонов, живущие лишь столько времени, что со скоростью почти равной скорости света они едва успевают пересечь атомное ядро. Такую доктрину развивали в конце 50-х и начале 60-х годов, особенно Джеффри Чу из Беркли, и иногда ее называют «ядерной демократией».

При таком вольном определении адрона имеются буквально сотни адронов, чья пороговая температура меньше 100 тысяч миллиардов градусов Кельвина, и вполне возможно, что еще сотни будут открыты. В некоторых теориях число разновидностей частиц бесконечно, и оно будет расти все быстрее и быстрее, если мы будем исследовать все большие и большие массы. Может показаться безнадежной попытка осмыслить такой мир, но крайняя сложность спектра частиц может привести, в определенном смысле, к простоте. Например, ро-мезон — это адрон, который можно представлять себе как нестабильную частицу, состоящую из двух пи-мезонов; когда мы явно включаем ро-мезоны в наши вычисления, мы уже до некоторой степени принимаем во внимание сильное взаимодействие между пи-мезонами; возможно, что включив все адроны явно в наши термодинамические вычисления, мы сможем игнорировать все остальные эффекты сильных взаимодействий.

Далее, если действительно имеется неограниченное число разновидностей адронов, то, когда мы заключаем в данный объем все больше и больше энергии, она идет не на увеличение случайных скоростей частиц, а на увеличение числа типов частиц, находящихся в объеме. Тогда температура не растет так быстро с ростом плотности энергии, как она росла бы, если бы число разновидностей адронов было фиксировано. В действительности, в подобных теориях может существовать максимальная температура, т. е. то значение температуры, при котором плотность энергии становится бесконечной. Это такой же непреодолимый верхний предел температуры, как абсолютный нуль в качестве нижнего предела. Идея о максимальной температуре в физике адронов принадлежит Р. Хагедорну из лаборатории ЦЕРНа[48] в Женеве, а затем она развивалась другими теоретиками, включая Керзона Хуанга из МТИ и меня самого. Имеется даже довольно точная оценка того, какой может быть максимальная температура, — она оказывается неожиданно низкой, около двух тысяч миллиардов градусов Кельвина (2 × 1012 К). Когда мы подходим все ближе и ближе к началу, температура все больше и больше приближается к этому максимуму и разнообразие адронов становится все богаче и богаче. Однако даже при таких экзотических условиях все же есть начало, момент бесконечной плотности энергии, примерно на сотую долю секунды раньше первого кадра главы V.

Имеется другая научная школа, значительно более традиционная, более близкая к обычной интуиции, чем «ядерная демократия», и, на мой взгляд, более близкая к истине. Согласно этой школе не все частицы одинаковы; некоторые действительно элементарны, а все остальные состоят из простых комбинаций элементарных частиц. Считается, что в разряд элементарных частиц входят фотон и все известные лептоны, но не входит ни один из известных адронов. Вместо этого предполагается, что адроны состоят из более фундаментальных частиц, известных как «кварки».

Первоначальный вариант теории кварков принадлежит Мюррею Гелл-Манну и (независимо) Джорджу Цвейгу (оба из Калтеха[49]). Поэтическое воображение физиков-теоретиков действительно разыгралось вовсю в названии различных сортов кварков. Имеются кварки разных типов, или «ароматов», которые носят имена вроде «верхний», «нижний», «странный» и «очарованный»[50]. Более того, каждый «аромат» кварка бывает трех различных «цветов», которые теоретики США обычно называют красным, белым и голубым. Небольшая группа физиков-теоретиков в Пекине давно питает пристрастие к некоему варианту кварковой теории, но они называют эти частицы «стратонами», а не кварками, так как эти частицы соответствуют более глубокому пласту физической реальности, чем обычные адроны.

Если идея кварков правильна, тогда физика очень ранней Вселенной может оказаться проще, чем думали. Можно сделать ряд выводов о силах, действующих между кварками, из их пространственного распределения внутри ядерной частицы, а это распределение можно, в свою очередь, определить (если кварковая модель верна) из наблюдений столкновений электронов с ядерными частицами при высоких энергиях. Таким способом несколько лет назад в совместной работе МТИ и Станфордского ускорительного центра было найдено, что сила между кварками оказывается исчезающе малой, когда кварки находятся очень близко друг к другу. Это наводит на мысль, что при некоторой температуре, около нескольких тысяч миллиардов градусов Кельвина, адроны просто разобьются на составляющие их кварки, так же как атомы разбиваются на электроны и ядра при нескольких тысячах градусов, а ядра разбиваются на протоны и нейтроны при нескольких тысячах миллионов градусов. Согласно такой картине в очень ранние времена Вселенную можно рассматривать как состоящую из фотонов, лептонов, антилептонов, кварков и антикварков, причем все они движутся как свободные частицы, и поэтому каждая разновидность частиц представляет собой просто еще один тип излучения черного тела. Тогда легко вычислить, что должно было быть начало, состояние бесконечной плотности и бесконечной температуры, примерно на сотую долю секунды раньше первого кадра.

Эти более или менее интуитивные идеи были недавно поставлены на значительно более солидную математическую основу. В 1973 году три молодых теоретика Хью Дэвид Политцер из Гарварда, Дэвид Гросс и Франк Вилчек из Принстона показали, что в специальном классе квантовых теорий поля силы между кварками действительно становятся слабее, если кварки прижимаются ближе друг к другу. (Такой класс теорий называется «неабелевы калибровочные теории» по причинам, слишком техническим для того, чтобы их здесь объяснять.) Эти теории обладают примечательным свойством «асимптотической свободы»; асимптотически на малых расстояниях или при высоких энергиях кварки ведут себя как свободные частицы. Дж. К. Коллинз и М.Дж. Перри из университета в Кембридже показали даже, что в любой асимптотически свободной теории свойства среды при достаточно высоких температуре и плотности такие же, как если бы среда состояла только из свободных частиц. Таким образом, асимптотическая свобода подобных неабелевых калибровочных теорий дает солидное математическое подтверждение очень простой картине первой сотой доли секунды — тому, что Вселенная была сделана из свободных элементарных частиц.

Кварковая модель с большим успехом используется во множестве приложений. Протоны и нейтроны действительно ведут себя так, как если бы они состояли из трех кварков, ро-мезоны ведут себя так, как если бы они состояли из кварка и антикварка, и так далее. Но, несмотря на этот успех, кварковая модель преподносит нам большую загадку: проверено, что до сих пор невозможно разбить любой адрон на составляющие его кварки, даже с помощью самых высоких энергий, доступных на существующих ускорителях.

Эта же невозможность изолировать свободные кварки возникает и в космологии. Если адроны действительно разбились на свободные кварки в условиях, господствовавших в ранней Вселенной, тогда можно ожидать, что некоторое количество свободных кварков осталось до настоящего времени. Советский астрофизик Я.Б. Зельдович[51] оценил, что оставшиеся свободными кварки должны встречаться в теперешней Вселенной примерно так же часто, как атомы золота. Нет нужды говорить, что золото не слишком распространено, но унцию золота добыть значительно легче, чем унцию кварков.

Загадка несуществования изолированных свободных кварков есть одна из самых важных проблем, с которыми в настоящее время сталкивается теоретическая физика. Гросс, Вилчек и я предположили, что возможное объяснение этому дает «асимптотическая свобода». Если сила взаимодействия между двумя кварками уменьшается, когда они близко прижимаются друг к другу, то эта сила увеличивается, когда кварки отрываются друг от друга. Поэтому энергия, необходимая на то, чтобы оторвать один кварк от других в обычном адроне, увеличивается с ростом расстояния, и в конце концов оказывается достаточно большой, чтобы породить из вакуума новую кварк-антикварковую пару. В результате все кончается не несколькими свободными кварками, а несколькими обычными адронами. Это в точности напоминает попытку изолировать один конец струны: если мы очень сильно ее растянем, то струна разорвется, но конечным результатом будут два куска струны, каждый с двумя концами! Кварки в ранней Вселенной были достаточно близки друг к другу, так что они не чувствовали этих сил и могли вести себя как свободные частицы. Однако каждый свободный кварк, существовавший в очень ранней Вселенной, должен был в процессе расширения и охлаждения Вселенной либо аннигилировать с антикварком, либо найти свою могилу внутри протона или нейтрона.

Перейти на страницу:

Стивен Вайнберг читать все книги автора по порядку

Стивен Вайнберг - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Первые три минуты отзывы

Отзывы читателей о книге Первые три минуты, автор: Стивен Вайнберг. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*