Kniga-Online.club
» » » » Андрей Райгородский - Кому нужна математика? Понятная книга о том, как устроен цифровой мир

Андрей Райгородский - Кому нужна математика? Понятная книга о том, как устроен цифровой мир

Читать бесплатно Андрей Райгородский - Кому нужна математика? Понятная книга о том, как устроен цифровой мир. Жанр: Прочая научная литература издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Поскольку современная реальность постоянно усложняется, существующего математического аппарата часто не хватает. И это, безусловно, мощный стимул для появления новых задач и теорий.

Математика неизвестного будущего

Не все математические задачи взяты из практики. Так и должно быть, потому что мы не можем с уверенностью предсказать пути развития общества и технологий даже в ближайшем будущем. Это не по силам даже самым информированным людям с совершенно неуемной фантазией. Например, хорошо известно, что писатели-фантасты практически ничего не сумели предугадать. В основном они описывали технологии своего времени, приукрашивая их фантастическими деталями.

Никто не предрек появления интернета. Наоборот, Нобелевский лауреат Деннис Габор, изобретатель голографии, в 1962 году заявил, что передача документов по телефону хоть и возможна в принципе, но требует таких огромных расходов, что эта идея никогда не найдет практического воплощения. При этом первый успешный модем был представлен в том же году! А Кен Олсен, один из создателей Digital Equipment Corporation (DEC), в 1977 году сказал, что вряд ли найдется человек, которому может дома понадобиться компьютер. Через сколько лет после этого компьютер появился в вашем доме?

Никто не знает, какая абстрактная теория завтра может найти практическое применение. Потрясающий пример – теория чисел, область математики, изучающая числа и их закономерности. Теория чисел оставалась абстрактной наукой со времен Древней Греции до второй половины XX века. Сегодня эта теория широко используется для шифрования сообщений, передаваемых через интернет. Именно благодаря ей сохраняется конфиденциальность ваших паролей и номеров кредитных карточек, когда вы вводите их на многочисленных сайтах. Мы расскажем об этом подробнее в главе 7.

Наконец, нам трудно удержаться от еще одного варианта ответа на вопрос, зачем нужны новые сложные теории. Да просто ради красоты этих теорий! Красивая математика имеет полное право на существование. В научном мире должно оставаться что-то от Касталии Германа Гессе, где ученым разрешено заниматься чем угодно, где целью жизни может стать «игра в бисер»[2] – «самая блистательная и самая бесполезная». Почему? Потому что нельзя поставить науку полностью на службу материальным нуждам общества. Наука выполняет функцию просветительства. Это единственная сфера деятельности, в которой человек может работать, движимый исключительно непрактическим любопытством. Грубо говоря, наука делает мир умнее и нужна человечеству так же, как и искусство, которое делает мир более духовным.

Глава 2

Менеджмент и многогранники

Компьютерные будни логистики

На специальности «Прикладная математика» в основном обучают математике. Доля программирования не так уж велика по сравнению с бесконечным матанализом, алгеброй и матфизикой. При этом выпускники часто становятся программистами.

– Интересно, насколько тебе нужна вся эта математика? – спросила Нелли у друга и бывшего однокурсника, а сегодня системного администратора в международной компании. Тот не задумался ни на секунду:

– Конечно нужна! Вот недавно клиенты заказали программу для распределения товаров по вагонам. Мы сразу поняли, что такую задачу ежедневно решают все поставщики всех товаров. Значит, она известная. Через полчаса мы уже знали, что это «задача об упаковке», и могли предложить несколько решений. Кстати, клиентам пришлось объяснять, что задача NP-трудная, то есть мы не можем гарантировать самое лучшее из всех возможных решений. И они согласились. А что им оставалось?

Вся современная логистика основана на математических методах. Где расположить склады и сервисные пункты? Как распределить товары по вагонам и грузовикам и какими маршрутами все это отправить? Сколько товара держать на складе и как часто его пополнять? Как составить расписание поездов, самолетов, большого производства и даже спортивных соревнований?

Этими вопросами занимается область прикладной математики под названием исследование операций. По большому счету это наука о том, как оптимально организовать процессы бизнеса и производства. Сюда, безусловно, относится логистика, а также многие другие задачи, например из области финансов или телекоммуникаций.

Исследование операций начало развиваться относительно недавно, после Второй мировой войны. И далеко не сразу научные результаты нашли практическое применение. В 2002 году в специальном юбилейном выпуске в честь 50-летия журнала «Исследование операций» Чарльз Холт делится своими воспоминаниями о том, как он и его коллеги Франко Модильяни, Джон Муф и Герберт Симон разрабатывали и внедряли научные методы планирования производства:

Мы взяли интервью у менеджеров пятнадцати компаний. Поначалу менеджеры отрицали наличие каких-либо проблем. По крайней мере таких, с которыми коллеги-профессора могли хоть как-то помочь. Но когда мы расспрашивали более подробно, возникали картины наподобие телеги на разваливающихся колесах – системы, катящиеся без всякого контроля от одного кризиса к другому{1}.

В процессе работы все менеджеры постепенно переключились на систему «коллег-профессоров». Команда написала книгу «Планирование производства, инвентаря и трудовых ресурсов». Модильяни и Симон получили Нобелевские премии по экономике, а работы Муфа легли в основу исследований Роберта Лукаса, тоже впоследствии лауреата Нобелевской премии.

Методы исследования операций глубоко внедрились в современный бизнес. Никому не придет в голову планировать большое производство или составлять расписание самолетов вручную. Для этого есть подготовленные специалисты и стандартное коммерческое программное обеспечение. Даже самый элементарный подход в рамках исследования операций всегда превзойдет любое решение «на глазок». Исследование операций преподают не только на факультетах прикладной математики, но и в бизнес-школах.

В этой главе мы расскажем о задачах оптимизации, которые, в частности, возникают при планировании и составлении расписаний.

Проклятие размерности

Сложность задач оптимизации заключается в невообразимом множестве возможных решений. Чтобы продемонстрировать масштаб проблемы, давайте посмотрим на самый простой вариант расписания.

У нас есть один прибор, на котором нужно выполнить 25 заданий. Спрашивается: в каком порядке выгоднее всего это делать? «Выгода» может зависеть от срока выполнения, времени, проведенного в очереди, и других факторов.

Задача непростая, о ней написана не одна диссертация. Но, допустим, мы решили поступить наипростейшим образом. Берем самый мощный компьютер и пишем программу, которая считает прибыль и убытки для каждой возможной последовательности заданий. После этого выбираем наиболее выгодную последовательность.

Теоретически все правильно. Но прежде чем запустить программу, давайте посчитаем, сколько разных последовательностей ей придется перебрать.

На первое место можно поставить любое из 25 заданий. Для каждого из 25 вариантов для первого места у нас есть 24 варианта для второго места. Получается, что первые два места можно заполнить

25 × 24 = 600

способами. Продолжаем: 23 варианта для третьего места, 22 – для четвертого и так далее. Всего у нас получается

25 × 24 × 23 × 22 × 21 × 20 × 19 × 18 × 17 × 16 × 15 × 14 × 13 × 12 × 11 × 10 × 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1 = 15511210043330985984000000

способов.

Это число называется двадцать пять факториал и обозначается «25!». Насколько оно велико? Если взять современный процессор с тактовой частотой 2 ГГц (2 млрд операций в секунду), то для выполнения такого количества операций ему понадобится 245 млн лет! А на то, чтобы просчитать все варианты, с прибылью и убытками, да еще и перемещать информацию в памяти компьютера, – и того больше. А ведь задачка казалась совсем простой, всего один прибор, всего 25 заданий. Не сравнить с серьезным современным производством.

Конец ознакомительного фрагмента.

Сноски

1

Мы включили в книгу приложения для подготовленного читателя, чтобы ее можно было использовать в качестве учебника, например для спецкурса в старших классах или для вводных лекций в вузе.

2

Отсылка к знаменитому одноименному роману лауреата Нобелевской премии Германа Гессе. Прим. ред.

Перейти на страницу:

Андрей Райгородский читать все книги автора по порядку

Андрей Райгородский - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Кому нужна математика? Понятная книга о том, как устроен цифровой мир отзывы

Отзывы читателей о книге Кому нужна математика? Понятная книга о том, как устроен цифровой мир, автор: Андрей Райгородский. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*