Kniga-Online.club

Александр Проценко - Энергия будущего

Читать бесплатно Александр Проценко - Энергия будущего. Жанр: Прочая научная литература издательство неизвестно, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Характер протекания этого взрыва показывает, что всю энергию лазерного луча, необходимую для возбуждения термоядерной реакции, надо успеть внести за время, по крайней мере не большее, чем время разлета плазмы, образовавшейся из первоначальной прореагировавшей части шарика-мишени. Возможно ли это?

Да, мы об этом уже говорили. Лазер как раз такое устройство, которое позволяет создавать очень короткие импульсы энергии длительностью в 10^-9-10^-11 секунды.

Стоит сказать еще об одном условии, необходимом для осуществления термоядерной реакции. Какое количество энергии, которую должен внести лазерный импульс в шарик за этот короткий миг, чтобы разогреть его до необходимой температуры? Эта энергия, по нашим житейским представлениям, невелика: для шарика весом в один грамм (такой вес и нужен для того, чтобы реакция прошла успешно) эта величина колеблется в пределах от 30 до 300 киловатт-часов.

Действительно, не очень-то много. Однако, если вспомнить, что энергия, выстреливаемая лазером в импульсе, составляет всего несколько сотых долей ватт-часа, то ясно, что одним лазером ничего поделать нельзя. Значит, для получения импульса с минимальной для начала реакции величиной энергии, хотя бы в 30 киловатт-часов, придется «взять в упряжку» миллионы лазеров! Практически такая задача совершенно невыполнима. Перед этой фантастикой отступили даже наиболее оптимистично настроенные ученые. И казалось, что работа зашла в тупик. Это был один из самых трудных переломных моментов в исследованиях по лазерному термоядерному синтезу. Но тут группа ученых «выдала» довольно простую идею. Вот ее смысл: до нагревания шарика необходимо сильно увеличить его плотность с помощью энергии того же лазера. Это позволит тогда существенно уменьшить необходимую для зажигания реакции энергию лазера.

Сама идея безударного адиабатического сжатия, безусловно, не только хорошо известна и применяется специалистами, но и изложена во множестве учебников и монографий. Тем не менее в применении к проблеме лазерного термоядерного синтеза она оказалась принципиально новым техническим решением.

Чтобы сжать шарик из термоядерного топлива и увеличить его плотность в десятки тысяч раз, нужно создать на его поверхности давление, равное, например, давлению в центре Солнца. Полагают, что за счет сил гравитации оно гам равно ста миллиардам атмосфер.

Сто миллиардов атмосфер! Сопоставим эту величину с привычными мерками. Всяческими механическими ухищрениями или детонацией взрывчатых веществ достигают только около миллиона атмосфер. За счет сферического взрывного обжатия можно это давление увеличить еще примерно в 10 раз.

Собственно лазерное излучение создает на поверхности шарика огромное давление в 100 миллионов атмосфер! Но этого еще мало! Нужно больше. Необходимое давление получается «автоматически»: при взаимодействии луча лазера с поверхностью шарика вещество поверхности шарика взрывается и начинает разлетаться, создавая импульс давления, направленный внутрь шарика, то есть сжимает шарик. Этот импульс гораздо больше того, что создается самим лучом. Те, кто интересовался работой реактивных двигателей, знают, что при равной мощности двигатель с материальным рабочим телом, например водородом, создает большую тягу (то есть давление), чем фотонный (световой). Значит, сжатие шарика, создаваемое реактивным действием плазменной струи испаряющегося вещества, больше, чем действие лазерного луча. Вследствие этого эффекта давление светового луча на поверхности шарика увеличивается еще в 100 раз. Наконец оно может возрасти почти на столько же за счет применения взрывного обжатия шарика.

В конечном счете лазер может создать в шарике из топлива давление, сравнимое с давлением в центре Солнца.

Существует, однако, на этом пути серьезное препятствие. Если пытаться брать данную крепость, что называется, «в лоб», одним ударом лазерного луча, то почти ничего не получится, так как плотность шарика увеличится всего в несколько десятков раз. Ее возрастанию помешает быстрый нагрев шарика, а с ростом его температуры станет расти его внутреннее давление (или упругость). А это будет препятствовать дальнейшему сжатию, и разогретый шарик, не успев как следует сжаться, начнет расширяться. В противовес этому было предложено не простое, а «безударное адиабатическое» сжатие.

Приближенно его можно осуществить, если, меняя во времени мощность лазерного луча, произвести вначале обжатие шарика медленное, чтобы скорость сжатия на начальном этапе была меньше скорости звука в шарике и в нем не создавались бы ударные волны. Отсюда «безударное» сжатие, то есть отсутствие ударных волн, которые в противном случае, уходя вперед от фронта сжатия, разогревали бы шарик. Так как они не возникают почти до конца сжатия, то шарик не разогревается, поскольку в него не вносится тепло (адиабатическое сжатие). Затем на последнем этапе можно сильно увеличить мощность луча и разогреть шарик. При таком сжатии плотность в нем ядер возрастет в несколько тысяч раз и сможет достичь 1000–2000 граммов на кубический сантиметр.

Такая плотность в шарике из дейтериево-тритиевой смеси существенно меняет характер протекания термоядерной реакции. Поскольку количество ядер в единице объема возрастет, они начнут сталкиваться, как говорится, на каждом шагу. При увеличении плотности вещества в десять тысяч раз, в сто миллионов раз возрастет скорость термоядерной реакции, которая зависит от квадрата плотности вещества. А это означает, что за то время, пока шарик удерживается инерциальными силами, успевает сгореть большое количество термоядерного топлива даже при меньшей температуре разогрева. Выделившаяся при этом энергия во много раз превысит энергию лазерного луча, затраченную на разогрев и сжатие шарика.

Так, используя очень небольшую часть энергии лазера на уплотнение шарика, можно создать гораздо лучшие условия для осуществления термоядерной реакции, то есть значительно снизить требования к величине энергии, которую должен дать лазер для возбуждения термоядерной реакции.

Вспомните, если ранее в случае чисто теплового нагрева (без сверхсжатия) энергия, передаваемая лазером в импульсе, должна была находиться в интервале 30-300 киловатт-часов, то, воспользовавшись сверхсжатием, можно уменьшить ее в тысячу раз.

Задача существенно упростилась. Передача в концентрированном виде такой энергии с помощью системы лазерных устройств — это уже технически разрешимая проблема.

Есть термоядерные нейтроны!

В начале 60-х годов после создания лазеров и проведения первых теоретических исследований по их применению для термоядерного синтеза была начата подготовка к проведению экспериментов.

Многие формулы, схемы, чертежи требовали проверки на реальных физических моделях. Однако целесообразность развертывания работ по термоядерному синтезу, даже экспериментальных, вызывала сомнения и различное отношение. Скажем, специалисты Ливерморской лаборатории (США) считали, что полученные теоретические результаты по сжатию мишеней обнадеживающи, работы по ним следует продолжать Ученые же Лос-Аламосской лаборатории (США) утверждали, что лазерная техника не соответствует еще уровню, при котором было бы целесообразно положение работ и постановка экспериментов по лазерному термоядерному синтезу.

Расчеты Н. Басова и О. Крохина (Физический институт АН СССР — ФИАН) таковы, что будто бы подтверждают принципиальную возможность нагрева плазмы до термоядерных температур при облучении твердой мишени лазером.

Эти точки зрения разных физических коллективов сейчас мы можем сопоставить, а тогда они не были вза имоизвестны. Только опубликование в 1964 году статьи Н. Басова и О. Крохина о возможности достижения термоядерных температур с помощью лазеров положило начало программе работ в этом направлении во многие странах и дало им мощный толчок.

К этому времени на территории ФИАНа в двухэтажном кирпичном здании, получившем название лазерного павильона, был подготовлен к работе в те годы самый мощный в мире лазер с энергией около 0,01 ватт-часа (40 джоулей) и длительностью импульса 2,5∙10-9 секунды.

Группа молодых физиков института надеялась, применив его для облучения газообразного дейтерия, получить термоядерные нейтроны — доказательство осуществления термоядерной реакции. Уж очень велико было их желание первыми получить термоядерные нейтроны. И это желание понятно. Ведь в основном поело статьи Н. Басова и О. Крохина в эксперименты по проблеме начали включаться многие исследовательские лаборатории США, Франции, ФРГ, Японии. И было бы очень отрадно, если бы и первые успешные результаты были бы получены самими авторами предложенного эксперимента.

Из работ академика А. Прохорова и профессора П. Пашинина было известно, что при искровом пробое газа лазерным лучом и его ионизации можно нагреть электроны плазмы примерно до 10 миллионов градусов.

Перейти на страницу:

Александр Проценко читать все книги автора по порядку

Александр Проценко - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Энергия будущего отзывы

Отзывы читателей о книге Энергия будущего, автор: Александр Проценко. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*