Атомы и электроны - Бронштейн Матвей Петрович
Долгое время физики не хотели верить, что эманация радия есть действительно газ — такой же, как воздух или как углекислый газ, но только радиоактивный. Например, Пьер и Мария Кюри утверждали, что эманация совсем не простой газ, а что-то среднее между обыкновенным веществом и лучами света. Но Резерфорд и Содди проделали много опытов, чтобы доказать, что эманация есть газ.
Всякий газ можно превратить в жидкость, если только достаточно сильно его охладить. И вот Резерфорд и Содди достали такую холодильную машину, в которой воздух можно сделать жидким. Такая машина теперь имеется в каждой хорошей физической лаборатории: в ней можно осуществить мороз в 192 °C ниже нуля. При таком холоде воздух делается жидким.
Резерфорд и Содди взяли несколько литров жидкого воздуха и сделали следующий опыт. У них был большой пустой стеклянный шар, покрытый изнутри очень лёгким налётом сернистого цинка. Если бы в этот шар попала эманация радия, то сернистый цинк стал бы светиться под действием лучей Беккереля. Резерфорд и Содди стали вдувать в этот шар тот воздух с примесью эманации, который у них был заперт в стеклянной трубке с виллемитом. Они вдували эту эманацию через длинную трубку, часть которой находилась в сосуде с жидким воздухом. Поэтому в этой части трубки температура была очень низка и эманация никак не могла проскочить через эту часть трубки: она замерзала в ней, превращаясь в жидкость, застревала там, не доходя до стеклянного шара. Всего этого Резерфорд и Содди не могли видеть, потому что не очень-то разберёшь, что творится внутри стеклянного колена трубки, засунутого в сосуд с жидким воздухом; да если бы они и могли туда заглянуть, то всё равно не смогли бы заметить этих микроскопических капелек жидкой эманации. Но им было совершенно ясно, что дело происходит именно так. Почему им это было ясно? Потому, что, когда стеклянное колено трубки лежало в жидком воздухе, эманация не попадала в шар, и шар не светился. Но стоило только вынуть колено из жидкого воздуха, как эманация, нагревшись, через несколько минут снова испарялась, и её легко можно было продуть в шар. Достаточно было один раз нажать рукой на резиновую грушу для продувания эманации, чтобы эманация попала в шар, который сейчас же начинал светиться, как фонарь, мягким белым приятным светом. При свете этого фонаря Содди мог смотреть на часы.
Что вытекает из всех таких опытов? Из них вытекает, что радий беспрерывно выделяет из себя какое-то другое радиоактивное вещество — эманацию радия. Эманация получается в ничтожных количествах: нужно иметь очень много радия, чтобы собрать эманацию хотя бы с булавочную головку. Но так как эманация очень сильно радиоактивна, то самую крохотную примесь эманации к воздуху легко заметить по лучам Беккереля, которые она испускает.
И вот Резерфорд и Содди захотели узнать: так же ли эманация неутомима, как радий? Так же ли она продолжает день за днём, год за годом испускать лучи без всякого заметного ослабления?
Резерфорд и Содди напустили эманацию в трубочку с виллемитом, закрыли оба крана, чтобы она не ушла, и оставили трубочку в тёмной комнате. Каждый вечер они приходили туда смотреть, как светится виллемит. Оказалось, что свечение виллемита с каждым вечером становилось всё слабее и слабее. Через четыре дня оно было вдвое слабее, чем раньше, к концу месяца оно почти совсем прекратилось.
Значит, эманация радия со временем теряет свои радиоактивные свойства.
Это очень важно. Важно потому, что если радиоактивное вещество — эманация радия — теряет свои радиоактивные свойства со временем, то, вероятно, то же самое можно сказать и обо всех других радиоактивных веществах. Трудно себе представить, чтобы радий был исключением даже среди радиоактивных веществ. А так как обыкновенное физическое наблюдение не позволяет обнаружить уменьшения радиоактивности радия и урана даже в течение нескольких лет, то остаётся предположить, что заметное уменьшение их радиоактивности происходит не в течение нескольких дней, как у эманации радия, а в течение огромных промежутков времени, во много раз превышающих самую длинную человеческую жизнь.
Таким образом, Резерфорд и Содди установили два факта:
1) из радия беспрерывно выделяется радиоактивный газ — эманация радия;
2) радиоактивные свойства эманации уменьшаются с течением времени, и это позволяет высказать гипотезу, что радиоактивные свойства всех других радиоактивных элементов тоже со временем убывают, хотя это убывание в некоторых случаях может происходить крайне медленно и поэтому почти незаметно.
Каким же образом происходит возникновение эманации и отчего могут уменьшаться радиоактивные свойства радиоактивных элементов?
Для того чтобы получить ответ на этот вопрос, физики обратились к изучению лучей Беккереля, испускаемых радиоактивными элементами.
Что представляют собой эти лучи, которые как будто бы ничем не отличаются от лучей Рентгена?
В 1899 году Пьер и Мария Кюри попробовали пропустить пучок лучей Беккереля через пространство, в котором было магнитное поле. Это они сделали для того, чтобы узнать, являются ли лучи Беккереля чем-то вроде лучей Рентгена (электромагнитными колебаниями, такими же, как лучи видимого света, но только с гораздо меньшей длиной волны) или же они скорее напоминают катодные лучи, т. е. представляют собой поток очень быстро движущихся, заряженных электричеством частичек.
Результат опыта был совсем неожиданным: в магнитном поле лучи Беккереля расщеплялись на две части! Одна из них изогнулась в магнитном поле — совершенно таким же образом, как искривляются катодные лучи, и при этом в ту же сторону, только величина искривления была в несколько раз меньше. Что отсюда следует? Отсюда следует, что эта часть лучей Беккереля несёт на себе, как и катодные лучи, отрицательный электрический заряд. Поэтому можно было исследовать эти лучи совершенно тем же самым способом, каким Томсон исследовал катодные лучи, т. е. можно было определить для них отношение e/m и их скорость, наблюдая отклонение лучей в магнитном и в электрическом полях. Эту работу проделал немецкий физик Кауфман. Он нашёл, что отношение e/m у этих лучей Беккереля такое же, как у электронов катодных лучей. Значит, эта (отклонившаяся в магнитном поле) часть лучей Беккереля есть не что иное, как поток электронов, вырывающихся, по-видимому, из атомов радиоактивных веществ. Что касается скоростей этих электронов, то они, как нашёл Кауфман, были очень разнообразны, но в среднем они были гораздо больше, чем у электронов катодных лучей. Поэтому и отклонение в магнитном поле было у них не такое большое, как у катодных лучей: действительно, чем быстрее движется заряженная частица, тем труднее магнитному полю сбить её, отклонить её от первоначального пути.
Наиболее быстрые из электронов, выбрасываемых радиоактивными веществами, оказались движущимися почти со скоростью света (300000 км/с).
Итак, часть лучей Беккереля — это просто поток очень быстрых электронов.
Но кроме этой части была ещё и другая часть. Она не отклонялась в магнитном поле и распространялась без всякого изменения направления.
Таков был результат опытов Кюри.
Но в 1903 году Резерфорд доказал, что та часть лучей Беккереля, которую Пьер и Мария Кюри не сумели отклонить в магнитном поле, тоже сложна и состоит из разных частей.
Рис. 12. Лучи, испускаемые радиоактивными веществами.
Для этого Резерфорд взял очень сильное магнитное поле, гораздо более сильное, чем то, которое было в распоряжении Кюри. В этом сильном магнитном поле та часть лучей Беккереля, которая в опытах Кюри не хотела искривляться, расщепилась на две части: одна из них изогнулась в магнитном поле, но не в ту сторону, в которую изгибается поток электронов, а в противоположную. Значит, это был поток заряженных частиц, но не электронов, а частиц, заряженных положительным электричеством. Другая же часть лучей по-прежнему продолжала распространяться прямолинейно, не обращая никакого внимания на магнитное поле.