Вилен Барабой - Солнечный луч
Циклические молекулы, в которых правильно чередуются одинарные и двойные связи между атомами углерода, и являются идеальными резонаторами, легко поглощающими и излучающими лучи видимой части спектра. Они-то и придают окраску окружающему нас земному миру, его живым обитателям и неживым предметам.
Нарисованная нами картина — это идеальный случай, который, как и все идеалы, воплощается в жизнь обычно не полностью ввиду вмешательства побочных факторов. Важнейший из этих факторов в данном случае — потеря части световой энергии при ее поглощении молекулами, при возбуждении пи-электронов и последующей отдаче поглощенной энергии излучением. Один из важнейших законов физики — второе начало термодинамики — утверждает, что при всякого рода энергетических переходах какая-то часть энергии переходит в тепловую, т. е, в энергию беспорядочного колебания и вращения молекул.
Это второй путь превращения энергии электронного возбуждения, вызванного поглощением кванта лучистой энергии. Обычно в тепловую энергию превращается лишь часть поглощенной энергии света. Мощный поток видимых лучей вызывает значительный нагрев кожи человека, повышение температуры кожи и как реакцию на это прилив крови к коже, покраснение ее и усиление потоотделения. Однако действие такого лучистого тепла на организм непродолжительно и поверхностно.
Избыточная энергия может быть отдана атомом или молекулой в том же виде, в каком она была поглощена,— в виде кванта излучения. Этот третий путь отличается от идеального — резонансного тем, что за короткое время существования возбужденного состояния часть энергии электрона успевает превратиться в тепловую, и величина излучаемого кванта меньше поглощенного, а свет флуоресценции (вторичного излучения) более длинноволновый, чем поглощенный.
Таково правило Стокса, применимое ко всем красителям. Спектр испускания красителей всегда несколько сдвинут в длинноволновую сторону по сравнению со спектром поглощения.
Спектр поглощения любого красителя имеет максимум, соответствующий определенной длине волны света. В обе стороны от максимума поглощение уменьшается. Интересно, что спектр флуоресценции — вторичного излучения красителя — также представляет собой кривую — зеркальное отражение кривой поглощения (рис. 14). Это правило зеркальной симметрии было опытным путем установлено советским физиком-оптиком В. Л. Левшиным. Третье правило флуоресценции состоит в том, что монохроматический свет любой длины волны (в пределах спектра поглощения данного красителя) вызывает вторичное свечение во всей полосе флуоресценции, причем распределение интенсивностей в полосе свечения точно такое же, как в том случае, когда краситель облучается белым светом.
Как показано на рис. 14, кривые поглощения и высвечивания каждого красителя частично пересекаются. Поэтому можно выбрать свет, длина волны которого лежит на этом рисунке правее оси симметрии (изображенной вертикальной штриховой линией), но еще в пределах области поглощения (кривая а). Если светом такой длины волны осветить краситель, то флуоресцировать он будет, как обычно, в пределах всей полосы высвечивания (кривая б). При этом часть излучения флуоресценции окажется более коротковолновой, чем свет поглощенный. Эта так называемая антистоксова флуоресценция — исключение из первого правила вторичного высвечивания — не противоречит закону сохранения энергии. Хотя антистоксово излучение отличается квантами большей энергии, чем поглощенный свет, но общий энергетический выход флуоресценции несколько меньше, чем поглощенная энергия света (за счет перехода части ее в тепло).
Наконец, четвертый путь превращения лучистой энергии, поглощенной красителем,— переход в энергию химического взаимодействия молекул. Наличие избыточной энергии делает возбужденную молекулу более активной. Она вступает в такие химические реакции, в которые в невозбужденном состоянии вступать не может. Энергия активации большинства химических реакций лежит в пределах 20—100 ккал/моль. Как видно из данных табл. 3, энергии квантов видимого света достаточно для возбуждения реакций. Благодаря участию энергии квантов поглощенного света такие реакции называются фотохимическими.
Рис. 14. Спектры поглощения (а) и флуоресценции (б) красителя флуоресцеина. Кривая люминесценции, сдвинутая в сторону более длинных волн, зеркально воспроизводит кривую поглощенияТаблица 3
Длина волны и энергия квантов света
Круг возможных реакций увеличивается по мере приближения к фиолетовому концу спектра. Основные типы фотохимических реакций рассмотрены ниже.
Фотораспад осуществляется преимущественно под влиянием ультрафиолетовых лучей. Некоторые наиболее легко возбудимые молекулы способны распадаться и под влиянием видимого света, главным образом фиолетового. Схематически реакция может быть изображена так:
АВ* -> А + В,
где АВ* — фотовозбужденная сложная молекула.
Фотоперегруппировка. В этом случае часть энергии электронного возбуждения расходуется на изменение геометрической конфигурации молекулы, на перенос атомов или связей внутри молекулы. Реакции этого типа также чаще наблюдаются под влиянием ультрафиолетовых (иногда даже фиолетовых) лучей. Схема реакции
АВ* -> ВА.
Фотоприсоединение. За счет избыточной энергии молекула способна соединяться с такими группировками, которые в невозбужденном состоянии она присоединить не может
АВ* + С -> АВС.
Частным случаем этой реакции является фотоди-, или полимеризация, соединение двух одинаковых молекул
АВ* + АВ -> АВАВ.
Весьма важный вид реакции фотоприсоединения — реакция присоединения кислорода — имеет большое биологическое значение.
Фотоперенос электрона. Эта реакция, как и предыдущие, осуществляется главным образом под влиянием ультрафиолетовых лучей. Проявляется эффект в увеличении проводимости или в появлении окраски, свойственной положительному иону красителя.
Фотосенсибилизация. Если молекулы красителя в растворенном или адсорбированном, твердом состоянии, перемешаны с молекулами вещества, не поглощающего свет, они могут быть своеобразными переносчиками энергии лучей — фотосенсибилизаторами. Такую функцию в растениях выполняет хлорофилл. Поглотив световой фотон и перейдя в возбужденное состояние, молекула красителя может затем вступить во взаимодействие с молекулой неокрашенного вещества таким образом, что состояние возбуждения передается второй молекуле.
После этого частица красителя возвращается в нормальное, невозбужденное, состояние и способна поглотить новый фотон.
Схематически два основных этапа реакции фотосенсибилизации можно изобразить так:
A + hv -> А*,
где А — молекула красителя; А* — та же молекула в возбужденном состоянии; hv — энергия кванта света;
A* + M -> A + M*,
где М — молекула неокрашенного соединения; М* — та же молекула в возбужденном состоянии. Именно этот второй этап и есть, собственно, реакция фотосенсибилизации. Обе реакции фотохимические, так как состоят в поглощении фотона, поэтому они почти не зависят от температуры среды.
Молекула М*, обогащенная энергией, может вступать в такие реакции, которые недоступны ей в обычном состоянии. В живом организме это в основном реакции окисления. В каждой живой клетке обязательно присутствует растворенный кислород. Значит, реакции окисления возникают в живом теле очень легко, как только появляются пригодные для них молекулы.
Третий этап процесса фотосенсибилизации, начатого с поглощения фотона молекулой фотосенсибилизатора А, можно изобразить в следующем виде:
М* + 02 + М -> М02М, или М* + 02 -> М02.
В этом случае в процессе окисления между двумя молекулами вещества М образуется мостик, своего рода «сшивка», или окисляется сама возбужденная молекула. В обоих случаях процесс необратим, и окисленные молекулы выходят из строя, перестают выполнять свою функцию в клетке. Молекула — переносчик энергии света в процессе фотосенсибилизации не пострадала. Она одна может окислить большое количество молекул вещества М и нанести организму большой ущерб.
Свойства фотосенсибилизации присущи многим красителям (эозину, эритрозину, бенгальскому розовому, риванолу, метиленовому синему, акридину, флуоресцеину и др.), а также каменноугольной смоле, дегтю, в больших дозах некоторым медикаментам (йоду, хинину, сульфаниламидам), канцерогенным веществам (химическим веществам, вызывающим при длительном воздействии образование опухолей).
Реакцию фотосенсибилизации легче всего наблюдать в крови. Фотосенсибилизатор проникает внутрь красных кровяных телец — эритроцитов — и передает поглощенную энергию света белковым молекулам их оболочки. Проходит некоторое время, и оболочка начинает разрушаться, красящее вещество крови — гемоглобин — выходит в плазму. В организме, которому ввели большую дозу фотосенсибилизатора и на который падает мощный поток света эффективной длины волны, процесс разрушения эритроцитов (гемолиз) идет быстро, развивается малокровие — анемия, почечные канальцы переполняются вышедшим в плазму гемоглобином и перестают выделять мочу. В более тяжелых случаях наступает смерть.