Станислав Галактионов - Биологически активные
Ясно, что внутри клетки должны существовать какие-то системы, многократно усиливающие эффект взаимодействия молекулы гормона с расположенным на ее поверхности рецептором.
Один из самых универсальных механизмов подобного усиления открыт Э. Сэзерлендом в 1960 году. Сэзерленд исследовал действие упоминавшегося уже гормона адреналина на клетки печени, в которых он вызывает расщепление гликогена (крахмалоподобного запасного вещества) с образованием глюкозо-1-фосфата. Эта реакция катализируется ферментом гликоген-фосфорилазой, активность которой в клетках печени резко возрастает под действием адреналина. Почему?
Сам адреналин внутрь клетки не проникает, он лишь связывается с рецепторами на ее поверхности. Рецептор же адреналина образует комплекс с молекулой фермента аденилатциклазы, причем этот комплекс проходит через мембрану насквозь, так что с внутренней стороны мембраны в цитоплазму выступает активный центр фермента. Организация комплекса такова, что при связывании рецептором молекулы адреналина активизируется аденилатциклаза; детали механизма активации пока неизвестны. Субстратом аденилатциклазы является АТФ (аденозин-3-фосфат). АТФ – важнейший участник процессов превращения энергии в клетке. К молекуле аденозина (об этом соединении уже была речь выше, при обсуждении структуры нуклеиновых кислот) присоединена цепочка из трех остатков фосфорной кислоты. Аденилатциклаза отщепляет от АТФ два фосфатных остатка, а третий соединяет с остатком рибозы второй валентной связью, так что образуется цикл:
Это соединение называется циклическим аденозинмонофосфатом, или цикло-АМФ.
Цикло-АМФ выполняет функцию внутриклеточного биорегулятора (как оказалось впоследствии, не только в рассматриваемой реакции клеток печени на адреналин, но и во многих других реакциях, индуцированных гормонами). Внутриклеточным рецептором цикло-АМФ является неактивная форма фермента протеинкиназы. Происходит это следующим образом. Неактивная форма протеинкиназы – это комплекс, образованный четырьмя белковыми молекулами двух типов. Одна пара представляет собой собственно ферменты, другая – регуляторные субъединицы. Собственно, их регуляторная функция заключается в том, что, образуя с ферментными субъединицами описываемый комплекс, они лишают их каталитической активности.
Именно на поверхности регуляторных субъединиц находятся участки связывания цикло-АМФ, по два на каждой: посадка на них четырех молекул цикло-АМФ приводит к тому, что комплекс становится непрочным – от него отделяются обе ферментативные субъединицы. И в этом случае неизвестны тонкие молекулярные подробности механизмов, лежащих в основе этого эффекта, но существуют весьма надежные экспериментальные доказательства того, что в принципе все происходит именно таким образом.
Каталитически активные молекулы протеинкиназы, образовавшиеся благодаря действию цикло-АМФ, в свою очередь, активизируют фермент под названием киназа фосфорилазы. На поверхности его молекулы имеется два остатка серина; при участии протеинкиназы гидроксильные группы этих остатков фосфорилируются, необходимый для этого остаток фосфорной кислоты отщепляется от молекулы АТФ. Фосфорилированная молекула обретает ферментативную активность.
Совершенно аналогичным образом – фосфорилированием двух гидроксильных групп остатков серина – киназа фосфорилазы активирует упомянутую гликоген-фосфорилазу, которая наконец принимается за дело, начинает расщеплять гликоген.
Не слишком ли много здесь промежуточных звеньев? Рационализаторский зуд, не чуждый, по-видимому, никому из нас, подсказывает немного более простое решение: пусть с рецептором адреналина будет связана не аденилатциклаза, а сразу гликоген-фосфорилаза, которая и активизировалась бы при посадке на рецептор молекулы гормона.
Надо сказать, что подобный ход рационализаторской мысли очень распространен. Знакомясь первый раз с каким-то устройством или механизмом, мы обычно обнаруживаем в нем множество совершенно бесполезных узлов или бессмысленно усложненных элементов. Наиболее решительные принимаются тут же устранять эти очевидные просчеты конструкторов. Рассказывал мне один пожилой инженер-дорожник, как в довоенное еще время впервые появились у них грейдеры. Это были прицепные машины; толщина запорного болта в прицепном устройстве была выбрана таким образом, что при возникновении усилий, угрожающих деформациями рамы грейдера (например, если на пути встретился большой валун), болт срезался. В предвидении таких случаев завод-изготовитель прилагал к каждой машине ящик запасных болтов.
Работники же, обслуживающие этот грейдер, видели причину частых остановок просто в несовершенстве конструкции прицепного устройства; кляня на чем свет стоит бестолковых инженеров, они изготовили собственное – солидное и надежное. Через несколько дней грейдер был сдан в металлолом.
Хотя мы и говорим все чаще о клеточной инженерии, но исправлять по-своему структуру процессов, протекающих в клетке, по-настоящему еще все же не умеем. В каком-то отношении это и неплохо, ибо чаще всего нас постигла бы судьба горе-рационализаторов прицепного устройства грейдера.
Вот и высказанное выше предложение – пусть адренорецептор активирует непосредственно гликоген-фосфорилазу, а все промежуточные звенья – выкинуть. Не так все, оказывается, просто. Рецепторов адреналина на одной клетке не так уж много. Точные цифры неизвестны, но, скорее всего – сотни (от силы – тысячи, но вряд ли). Сотня молекул фермента, да еще связанного с мембраной (то есть громадные молекулы гликогена должны сами диффундировать к ним), не обеспечит должной скорости расщепления. Как же сделать, чтобы одна молекула адреналина, связавшаяся с рецептором, активировала не одну, а гораздо большее количество молекул фермента-исполнителя?
Оказывается, в точности так, как это сделано в клетке печени. Активация одной молекулы аденилатциклазы приводит к появлению за время существования комплекса, скажем, тысячи молекул цикло-АМФ (здесь цифры уж совершенно условные, хотя и близкие реальным по порядку величины). В результате активизируются, допустим, сотни молекул протеинкиназы. Каждая из них активирует за рассматриваемый промежуток времени опять же сотни молекул киназы фосфорилазы, каждая из которых, в свою очередь, активирует сотни молекул гликоген-фосфорилазы.
Перемножим трижды эти сотни, получим уже миллионы. Подобным образом организованные системы называют каскадом усиления. В рассматриваемом случае действия адреналина на клетки печени коэффициент усиления составляет 25 миллионов, то есть образование одного комплекса молекулы адреналина с рецептором приводит к образованию 25 миллионов молекул глюкозо-1-фосфата. Под действием других ферментов это соединение превращается в глюкозо-6-фосфат, а затем в глюкозу и выбрасывается в кровь, что и является конечной целью этого регуляторного процесса.
Нет, определенно не так просто усовершенствовать что-нибудь в живой клетке.
Глава 5. Столь же кратко о биомембранах
Мирно, даже чуть скучновато тянутся себе заседания некой конференции по биофизике. Один за другим выходят на трибуну докладчики – личности всем знакомые, хотя бы заочно, и рассказывают почти в точности то, что от них ожидается. Вот этот небось опять будет о своих эритроцитарных мембранах... Кто там следующий за ним? А-а, потенциал покоя клеток водорослей... Слышали, слышали. Можно и сходить покурить.
После перекура оказывается, что на трибуне уже витийствует некто совершенно незнакомый. И это бы еще ничего – ну, бывает... Но вы послушайте, что это он такое говорит?
Говорил же докладчик (очень приблизительно) следующее:
– Пусть у нас имеется некоторое количество одинакового размера картонных квадратиков. Их стороны могут быть окрашены в четыре разных цвета – красный, желтый, зеленый, синий. Мы начинаем покрывать ими, как пол керамической плиткой, некую поверхность, соблюдая при этом кое-какие правила. Они, эти правила, определяют пары цветов, которые могут приходить в соприкосновение. Скажем, к красной стороне квадрата могут быть приставлены красная же и синяя, к желтой – только синяя, зеленая сторона должна быть свободна – к ней нельзя приставить никакой другой квадрат вообще, и т.д.
Рассмотрим простой случай, когда представлены лишь несколько способов раскраски квадратов: скажем, все стороны красные, пара противоположных сторон– красная, другая – зеленая, три стороны зеленые, одна красная. Наша задача формулируется следующим образом: возможно ли построение с соблюдением принятых правил ограниченных структур, то есть таких, к которым нельзя более приставить ни одного квадратика, и если да, то каковы свойства этих структур?