Kniga-Online.club
» » » » Станислав Михаль - Часы. От гномона до атомных часов

Станислав Михаль - Часы. От гномона до атомных часов

Читать бесплатно Станислав Михаль - Часы. От гномона до атомных часов. Жанр: Прочая научная литература издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Шарль Эдуард Гильом (1861-1938) исследовал свойства ферроникелевых сплавов и нашел сплав с содержанием 36% никеля, известный под названием «инвар» (от французского слова invariable), не только стойкий к коррозии, но и обладающий самым малым коэффициентом температурного расширения. В 1897 г. Тюри использовал инвар Шарля Эдуарда Гильома для создания маятников, а через три года стал монтировать инварные маятники у своих часов для астрономических измерений времени мюнхенец Рифлер. С того времени происходят и первые кварцевые маятники венского конструктора точных часов Карла Сатори, стабильность длины которых была еще на 60% больше, чем у инварных.

Точность маятниковых часов на астрономических обсерваториях зависела также от влияний восходящих потоков воздуха и при изменениях барометрического давления. Возникающая при этом барометрическая погрешность устранялась либо тем, что часовой механизм помещали в пространстве с частичным вакуумом (это одновременно ограничило влияние воздействия указанных сил), либо с помощью анероидного компенсатора — манометрической коробки с компенсаторным грузом, закрепленным на маятнике.

Балансовый осциллятор более чувствителен к воздействиям температуры, чем маятник.

Барометрическая погрешность баланса достигает около 0,2 с в сутки при изменении давления воздуха примерно на 0,01 Па. Изменение температуры на 1°C у обычных часов с латунным балансом и бронзовым волоском вызывает суточное изменение хода часов по меньшей мере на 10 с.

Неблагоприятные влияния изменений температуры на ход балансовых осцилляторов учитывали уже старые часовщики, которые изыскивали способ борьбы с этим влиянием.

Рис. 31. Изменение формы баланса с биметаллическим ободом: а — при повышенной температуре, б — при средней температуре, в — при пониженной температуре

Биметаллическая система, широко применяемая для маятников, нашла большое применение и для балансов, главным образом в виде биметаллических балансов с ободом, изготовленным из сварных стальных и латунных лент (рис. 31). У часов с обычным, некомпенсированным по температурам балансом увеличивался при повышении температуры момент инерции баланса, и часы тогда начинали отставать. Однако у биметаллического баланса под влиянием различной степени расширения стали и латуни обод прогибается в месте шва свободными концами вовнутрь, диаметр баланса уменьшается, ход часов ускоряется, в силу чего температурная погрешность компенсируется. При понижении температуры происходит противоположный процесс. Такой баланс мог удовлетворительно исправлять температурную погрешность всего осциллятора, а потому присоединенный к нему волосок не компенсировался. Известны различные виды компенсационных балансов для морских хронометров — биметаллический баланс Ирншау, построенный им в 1790 г., и баланс Шарля Эдуарда Гильома, изготовленный из латуни и ферроникеля и др.

В 1775 г. Берту открыл так называемую вторичную ошибку, оставшуюся у компенсационных балансов и проявляющуюся в суточном изменении хода часов в пределах от 2 до 5 с. Причиной этого был нелинейный характер расширения материалов баланса с изменением температуры. Берту установил, что биметаллический компенсационный баланс может точно устранить влияние температурного расширения лишь при двух определенных температурах, тогда как в диапазоне между ними возникает именно эта вторичная погрешность.

Закаленные стальные волоски, впервые изготовленные Жаном Целанисом Лутцом в 1847 г., которые раньше использовались для биметаллических балансов, страдали рядом недостатков. Они корродировали, и на них влиял земной магнетизм. Достоинствами же их были сравнительно малое внутреннее трение и малый расход энергии на упругую деформацию.

Шарль Огюст Пейлар (1840-1895) изобрел в 1877 г. в качестве побочного продукта при производстве платины неокисляющийся немагнитный сплав палладия с температурой плавления 1550°C. В то же время англичане производили эксперименты с волосками из стекла и золота. Изобретение Пейлара имело бесспорно большое значение для внедрения новых материалов в часовое производство, но это изобретение затмили дальнейшие изобретения Гильома, касающиеся ферроникелевых сплавов. Целью экспериментов Гильома было создание биметаллического баланса без вторичной погрешности. Ферроникелевый сплав, подходящий для такого баланса, содержал 42% никеля. В 1897 г. Поль Перре изготовил из этого сплава волосок, который имел намного меньшие изменения упругости в зависимости от температуры, чем сталь. После многих лет дальнейших экспериментов был создан, наконец, в 1913 г. опять-таки благодаря Шарлю Эдуарду Гильому новый температурно-стабильный материал элинвар (название произошло от сокращенных слов elasticite invariable) с содержанием хрома от 10 до 12%. Этот ферроникелевый сплав хотя и имел постоянный модуль упругости, но слишком сильно снижал амплитуду колебаний баланса и был очень чувствителен к магнитному полю. Другими его недостатками были мягкость и легкая деформируемость.

Несмотря на это, все же такая передача функций температурной компенсации с баланса на волосок привилась, так что в нынешнем часовом производстве применение компенсационных волосков — обычное дело. Исключением являются хронометры, где до сих пор сохранился биметаллический баланс с цилиндрическим стальным волоском. Нынешние наручные часы имеют компенсационные волоски из специальных ферроникелевых сплавов, известных под торговыми названиями «ниварокс», «изовал» и т.п., и гладкий монометаллический баланс, которые не участвуют в компенсации температурных влияний.

В историческом обзоре развития многих сплавов следует упомянуть эксперименты М.Р. Штрауманна из Вальденбурга, который использовал для баланса температурную анизотропию (различную степень растяжимости материала в разных направлениях) цинковых сплавов, достигаемую их надлежащей обработкой. Этими новыми материалами удалось еще более понизить температурную погрешность часов.

Балансовый осциллятор является весьма сложным устройством. Наряду с температурой и барометрическим давлением на стабильность его полуколебаний воздействует еще ряд других факторов, среди которых есть и неизохронная погрешность, возникающая при непостоянстве амплитуды баланса. Укажем для полноты изложения хотя бы на главные источники неизохронной погрешности, вызываемой нестабильностью амплитуды. Наряду с переменным импульсом спускового механизма это бывают колебания упругости волоска, влияние формы его крепления на концах, изменение зазора в замке регулировочной стрелки, градусника, изменение положения центра тяжести волоска и др.

Исследуя детальнее форму плоских волосков, мы должны обратить внимание в некоторых случаях на особую форму их концевой кривой. Волосок с особой формой закругления носит наименование волоска с кривой Бреге по имени самого создателя. Это, по существу, обычный плоский волосок, последний внешний виток которого несколько приподнят над остальными витками и сформирован в особую кривую, компенсирующую вредное переменное влияние крепления волоска в колодке и на мостике баланса.

Точная регулировка хода переносных часов и при хороших регуляторах с компенсационными элементами является весьма трудным делом, поскольку при изменении положения баланс, осциллятор и часовой механизм непрерывно подвергаются изменяющимся влияниям, например влиянию силы тяжести баланса и волоска или различного трения цапф в опорах при горизонтальном и вертикальном положениях механизма. Чтобы устранить неправильности хода, вызываемые положениями механизма, Бреге создал специальное устройство «турбиллион». Принцип его работы состоял в размещении спуска с осциллятором в особой клетке, которая постоянно вращалась вокруг вала секундного колеса со скоростью одного оборота в минуту. Этим способом Бреге исключил влияние силы тяжести баланса и волоска при изменении положения часов. Производство турбиллионов достигло высокого уровня в Швейцарии. Известны турбиллионы Фредерика-Луи Фавре-Булле (1770-1849), Эрнеста Гвинарда (1879) и, наконец, одного из главных позднейших производителей этих приборов Альберта Пеллатона-Фавре (1832-1914) и его сына Джеймса.

В 1894 г. Бэйн Бонниксен из Ковентри изобрел другой вариант турбиллиона — карусель, которая отличалась от турбиллиона Бреге главным образом скоростью вращения клети. Первоначально клеть со спуском в каруселях Бонниксена вращалась вокруг вала секундного колеса один раз в 52,5 мин, но у новейших типов время оборота сократилось до 39 мин.

Сигнальные устройства (будильники)

Идея соединить сигнальное устройство с часами по меньшей мере так же стара, как идея механических часов. Механизм боя самого старого типа запускали в ход поворотным часовым циферблатом с отверстиями, предусмотренными для часовых делений. Штифт, вложенный в одно из отверстий, приподымал в заданный момент спусковой рычаг, который приводил в действие механизм боя. Механизм боя со шпинделем, налетами и корончатым колесом настолько сильно напоминает спусковой механизм первых механических часов, что можно полагать, что спусковой механизм возник, например, из прежнего сигнального устройства водяных или других средневековых часов.

Перейти на страницу:

Станислав Михаль читать все книги автора по порядку

Станислав Михаль - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Часы. От гномона до атомных часов отзывы

Отзывы читателей о книге Часы. От гномона до атомных часов, автор: Станислав Михаль. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*