Джеймс Глейк - Хаос. Создание новой науки
После освобождения Парижа Мандельбро умудрился в течение месяца успешно сдать устные и письменные экзамены в Эколь Нормаль и Политехническую школу. Наряду с другими заданиями экзамены включали и проверку способностей к рисованию. Мандельбро совершенно неожиданно обнаружил в себе скрытое дарование, бойко набросав статую Венеры Милосской. На экзамене по математике, где предлагались алгебраические задачи, он компенсировал пробелы в знаниях безошибочной геометрической интуицией. Решая аналитическую задачу, Мандельбро почти всегда мог представить ее в виде некой воображаемой формы, которую можно изменить, преобразовать симметрически, сделать более гармоничной. Зачастую такие преобразования и открывали путь к решению проблемы. Когда дело дошло до физики и химии, геометрия помочь уже не могла, и оценки оставляли желать лучшего. Зато математические вопросы, на которые он ни за что не ответил бы, используя стандартную методику, вполне поддавались геометрическим манипуляциям.
Эколь Нормаль и Политехническая школа были элитными учебными заведениями, не имевшими аналога в США. В общей сложности они ежегодно готовили не более трехсот выпускников, поступавших, главным образом, на работу в университеты Франции или на государственную службу. Мандельбро начал свое обучение в Эколь Нормаль, менее крупном, но более престижном из двух этих учебных заведений, однако через несколько дней перевелся в Политехническую школу, успев заодно распрощаться с Бурбаки.
Бурбаки… Наверное, нигде, кроме Франции, в которой процветали авторитарные учебные заведения и сформировалась особая традиция образования, не могла появиться такая группа. Все начиналось как клуб, основанный в беспокойную пору после Первой мировой Золемом Мандельбро и горсткой беззаботных молодых математиков, которые стремились изменить французскую математическую школу. Война сыграла злую шутку с университетскими профессорами и их студентами, нарушив преемственность в академической среде и выбросив из нее целое поколение. Новобранцы намеревались заложить фундамент новой математической практики. Даже само название их группы, как выяснилось позже, было шуткой, понятной лишь узкому кругу. Что-то странно привлекательное слышалось в слове «Бурбаки». Так звали французского генерала греческого происхождения, жившего в XIX веке. Новый Бурбаки появился на свет в минуту веселья, но вскоре все оно куда-то испарилось.
Члены общества встречались тайно, и даже не все их имена нам известны. Число входивших в группу ученых не менялось. Когда один из них, достигший пятидесяти лет, выходил из общества (это поставили непременным условием), оставшиеся выбирали ему замену. Общество объединяло лучших и достойнейших из математиков, идеи которых вскоре распространились по всему материку.
Частично толчком к созданию группы послужили идеи Пуанкаре, выдающегося мыслителя второй половины XIX века, весьма плодовитого ученого и писателя, который, однако, невысоко ставил строгость и точность. Если точно знаешь, что идея верна, говорил Пуанкаре, зачем ее доказывать? Заложенные им основы математики представлялись членам группы довольно шаткими, и они с фанатичным упорством принялись писать огромные трактаты, пытаясь направить науку в верное русло. Центральным в их идеях являлся логический анализ: математик должен начинать с устоявшихся базовых принципов и на их основе вывести все остальные. Ученые считали математику первой из наук. Она виделась им обособленной областью знания, которая всегда остается самой собой и не может оцениваться по степени применимости к реальным физическим феноменам. Наконец, Бурбаки отвергали использование наглядных изображений, мотивируя данный тезис тем, что глаз всегда обманет математика. Иными словами, геометрии доверять не стоило. Математике надлежало быть кристально чистой, строгой и полностью соответствующей правилам.
Подобную идею нельзя было назвать исключительно французской, ибо в Соединенных Штатах математики отвергали притязания физических наук так же твердо, как художники и писатели старались дистанцироваться от запросов массовой культуры. Господствовала полнейшая точность, объекты изучения математических дисциплин становились замкнутыми и независимыми, а метод — формально-аксиоматичным, не требующим доказательств. Математик мог гордиться тем, что его изыскания ровным счетом ничего не объясняли ни в реальном, ни в научном мире. Из подобного отношения к исследованиям проистекало немало пользы, что весьма ценилось учеными. Даже Стивен Смэйл, стремившийся воссоединить математику с естественными науками, глубоко верил в то, что математика должна являться самодостаточной. С независимостью и обособленностью приходила ясность, шествовавшая рука об руку с точностью аксиоматичной методы. Каждому серьезному математику понятно, что точность являет собой определяющую силу самой дисциплины, ее прочную основу, без которой науку ждет гибель. Именно точность позволяет ученому уловить направление мысли, развиваемой веками, и уверенно продолжить работу над ней.
Однако требования точности обернулись неожиданными последствиями для математики XX века, избравшей свой особый путь. Ученый ищет достойную разрешения проблему и определяет, каким образом будет действовать дальше. Так получалось, что довольно часто исследователь вынужден был выбирать между двумя способами — математически строгим либо не столь корректным, зато небезынтересным с точки зрения естественных наук. Для математика выбор был ясен. Он абстрагировался от природы, и его студенты, сталкиваясь с той же проблемой, следовали по пути учителя.
Нигде математическая чистота не блюлась столь строго, как во Франции. Бурбаки достигли такого успеха, о котором основатели группы не могли даже мечтать. Их принципы, стиль и язык постепенно становились нормативными. Сделавшись совершенно «неуязвимыми», они достигли абсолютного господства, распространили свое влияние на всех талантливых студентов и добивались одного успеха за другим. Группа полностью подчинила себе Эколь Нормаль, чего Бенуа не мог стерпеть. Из-за этого он покинул школу, а десятилетие спустя и Францию, переселившись в Соединенные Штаты. Через несколько десятилетий не подлежащие критике абстракции Бурбаки начнут медленно затухать в сознании математиков под влиянием шока, вызванного компьютером с его возможностью генерировать зрительно доступные образы. Но все это уже не имело значения для Мандельбро-младшего, который сразу же взбунтовался против формализма Бурбаки, потому что не мог предать свою геометрию.
Творец своей собственной мифологии, Мандельбро во вступлении к книге «Кто есть кто» писал: «Наука разрушила бы саму себя, поставив во главу угла состязательность, как это происходит в спорте, и объявив одним из своих правил обязательный уход в узкоспециальные дисциплины. Те немногие ученые, которые по собственному желанию становятся „кочевниками“, исключительно важны для процветания уже устоявшихся научных отраслей».
Итак, этот «кочевник» по убеждению, а также «первооткрыватель по необходимости» покинул Францию, приняв предложение Томаса Дж. Уотсона из Исследовательского центра корпорации IBM. Что случилось после этого? Ни разу за тридцать последующих лет, выведших Мандельбро из тени безвестности к славе, ни одна его работа не была принята всерьез представителями тех дисциплин, которыми он занимался. Даже математики, не злословя открыто, замечали, что кем бы ни был Мандельбро, он не их поля ягода.
Находя вдохновение в малоизвестных фактах малоизученных областей истории науки, ученый медленно нащупывал собственный путь. Он занялся математической лингвистикой, рискнув истолковать закон распределения языковых единиц. (Позже он утверждал, что данный вопрос оказался в его поле зрения совершенно случайно: наткнулся на статью в книжном обозрении, которое он выудил из мусорной корзины знакомого математика, чтобы было что почитать в метро.) Изучал Мандельбро и теорию игр. Он также выработал собственный подход к экономике, писал об упорядоченности масштабов в распространении малых и больших городов и т. д. и т. п. То общее, та первооснова, что связывала все его труды воедино, оставалась еще в тени, не получив завершения.
В самом начале работы на IBM, вскоре после исследования ценовых механизмов, Мандельбро столкнулся с практической задачей, в решении которой был весьма заинтересован его патрон. Инженеров корпорации ставила в тупик проблема шума в телефонных линиях, используемых для передачи информации от одной вычислительной машины к другой. Электрический ток несет информацию в виде импульсов. Инженеры прекрасно понимали, что влияние помех будет тем меньше, чем выше мощность сигнала, однако некий самопроизвольный шум никак не удавалось свести на нет. Временами он возникал, угрожая стереть часть сигнала и тем самым внести ошибку в передаваемые данные.