Kniga-Online.club
» » » » Дмитрий Гусев - Краткий курс логики: Искусство правильного мышления

Дмитрий Гусев - Краткий курс логики: Искусство правильного мышления

Читать бесплатно Дмитрий Гусев - Краткий курс логики: Искусство правильного мышления. Жанр: Прочая научная литература издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Например:

Все небесные тела движутся. Все планеты – это небесные тела. Все планеты движутся.

В силлогизме первая посылка является простым суждением вида A (общеутвердительным), вторая посылка – это тоже простое суждение вида A, и вывод в данном случае представляет собой простое суждение вида A. Поэтому рассмотренный силлогизм имеет модус AАA.

Во втором примере: Все журналы – это периодические издания. Все книги не являются периодическими изданиями. Все книги не являются журналами. Силлогизм имеет модус AEE. В третьем примере: Все углероды – простые тела. Все углероды электропроводны. Некоторые электропроводники – простые тела.

Силлогизм имеет модус AAI. Всего модусов во всех четырёх фигурах, т. е. возможных комбинаций простых суждений в силлогизме, – 256. В каждой фигуре 64 модуса. Однако из этих 256 модусов только 19 дают достоверные выводы, остальные приводят к вероятностным выводам. Если принять во внимание, что одним из главных признаков дедукции (а значит, и силлогизма) является достоверность её выводов, то становится понятным, почему эти 19 модусов называются правильными, а остальные – неправильными.

Наша задача – уметь определять фигуру и модус любого простого силлогизма. Например, требуется установить фигуру и модус силлогизма:

Все вещества состоят из атомов. Все жидкости – это вещества. Все жидкости состоят из атомов.

Прежде всего надо найти субъект и предикат вывода, т. е. меньший и больший термины силлогизма. Далее следует установить местоположение меньшего термина во второй посылке и большего – в первой. После этого можно определить средний термин и схематично изобразить расположение всех терминов в силлогизме (рис. 39):

Все вещества (М) состоят из атомов (Р).

Все жидкости (S) – это вещества (М).

Все жидкости (S) состоят из атомов (Р). Как видим, рассматриваемый силлогизм построен по первой фигуре. Теперь надо найти его модус. Для этого следует выяснить, к какому виду простых суждений относятся первая и вторая посылки и вывод. В нашем примере обе посылки и вывод являются суждениями вида A (общеутвердительными), т. е. модус данного силлогизма – AАA. Итак, предложенный силлогизм имеет первую фигуру и модус AАA.

Проверьте себя:

1. Что такое силлогизм?

2. Какова структура простого силлогизма?

3. Что такое фигура простого силлогизма? Подумайте, почему возможны только четыре фигуры силлогизма? Как определить фигуру предложенного силлогизма? Приведите по два примера для каждой фигуры силлогизма, сопроводив их схемами взаимного расположения терминов и отношений между ними.

4. Что такое модус простого силлогизма? Как определить модус предложенного силлогизма? Сколько модусов существует во всех четырёх фигурах силлогизма? Что такое правильные и неправильные модусы? Сколько существует правильных модусов? Приведите, самостоятельно подобрав, по одному примеру силлогизмов, имеющих модусы AАA, AEЕ, AАI.

5. Определите фигуру и модус следующих силлогизмов:

1) Все ужи – это пресмыкающиеся. Все пресмыкающиеся не являются беспозвоночными. Все беспозвоночные не являются ужами.

2) Все сосны – это хвойные деревья. Ни одна берёза не является хвойным деревом. Ни одна берёза не является сосной.

3) Все пчёлы – это насекомые. Все пчёлы – это летающие существа. Некоторые летающие существа – это насекомые.

4) Ни одна элементарная частица не является молекулой. Все электроны – это элементарные частицы. Ни один электрон не является молекулой.

5) Все майоры являются военнослужащими. Некоторые россияне – это майоры. Некоторые россияне – военнослужащие.

3.3. Общие правила простого силлогизма

Правила силлогизма делятся на общие и частные.

Общие правила применимы ко всем простым силлогизмам, независимо от того, по какой фигуре они построены.

Частные правила действуют только для каждой фигуры силлогизма и поэтому часто называются правилами фигур.

Рассмотрим общие правила силлогизма:

1. В силлогизме должно быть только три термина. Обратимся к уже упоминавшемуся примеру силлогизма, в котором данное правило нарушено:

Движение вечно. Хождение в школу – это движение. Хождение в школу вечно.

Обе посылки этого силлогизма являются истинными суждениями, однако из них вытекает ложный вывод, потому что нарушено рассматриваемое правило. Слово «движение» употребляется в двух посылках в двух разных значениях: движение как всеобщее мировое изменение и движение как механическое перемещение тела из точки в точку. Получается, что терминов в силлогизме три: движение, хождение в школу, вечность, а смыслов (поскольку один из терминов употребляется в двух разных смыслах) четыре, т. е. лишний смысл как бы подразумевает лишний термин. Иначе говоря, в приведённом примере силлогизма было не три, а четыре (по смыслу) термина. Ошибка, возникающая при нарушении вышеприведённого правила, называется учетверением терминов.

2. Средний термин должен быть распределён хотя бы в одной из посылок. О распределённости терминов в простых суждениях речь шла в предыдущей главе. Напомним, что проще всего устанавливать распределённость терминов в простых суждениях с помощью круговых схем: надо изобразить кругами Эйлера отношения между терминами суждения, при этом полный круг на схеме будет обозначать распределённый термин (+), а неполный – нераспределённый (–). Рассмотрим пример силлогизма:

Все кошки (К) – это живые существа (Ж. с.). Сократ (C) – это тоже живое существо. Сократ – это кошка.

Из двух истинных посылок вытекает ложный вывод. Изобразим кругами Эйлера отношения между терминами в посылках силлогизма и установим распределённость этих терминов (рис. 40):

Как видим, средний термин («живые существа») в данном случае нераспределён ни в одной из посылок, а по правилу он должен быть распределён хотя бы в одной. Ошибка, возникающая при нарушении рассматриваемого правила, так и называемая – нераспределённость среднего термина в каждой посылке.

3. Термин, который был не распределён в посылке, не может быть распределён в выводе. Обратимся к следующему примеру:

Все яблоки (Я) – съедобные предметы (С. п.). Все груши (Г) – это не яблоки. Все груши – несъедобные предметы.

Посылки силлогизма являются истинными суждениями, а вывод – ложным. Как и в предыдущем случае, изобразим кругами Эйлера отношения между терминами в посылках и в выводе силлогизма и установим распределённость этих терминов (рис. 41):

В данном случае предикат вывода, или больший термин силлогизма («съедобные предметы»), в первой посылке является нераспределённым (–), а в выводе – распределённым (+), что запрещается рассматриваемым правилом. Ошибка, возникающая при его нарушении, называется расширением большего термина. Вспомним, что термин распределён, когда речь идёт обо всех предметах, входящих в него, и не распределён, когда речь идёт о части предметов, входящих в него, именно поэтому ошибка и называется расширением термина.

4. В силлогизме не должно быть двух отрицательных посылок. Хотя бы одна из посылок силлогизма должна быть положительной (могут быть положительными и обе посылки). Если две посылки в силлогизме отрицательные, то вывод из них или вообще сделать нельзя, или же, если его сделать возможно, он будет ложным или, по крайней мере, недостоверным, вероятностным. Например:

Снайперы не могут иметь плохое зрение. Все мои друзья – не снайперы. Все мои друзья имеют плохое зрение.

Обе посылки в силлогизме являются отрицательными суждениями, и, несмотря на их истинность, из них вытекает ложный вывод.

Ошибка, которая возникает в данном случае, так и называется – две отрицательные посылки.

5. В силлогизме не должно быть двух частных посылок. Хотя бы одна из посылок должна быть общей (могут быть общими и обе посылки). Если две посылки в силлогизме представляют собой частные суждения, то вывод из них сделать невозможно. Например:

Некоторые школьники – это первоклассники. Некоторые школьники – это десятиклассники.

Из этих посылок никакой вывод не следует, потому что обе они являются частными. Ошибка, возникающая при нарушении данного правила, так и называется – две частные посылки.

6. Если одна из посылок отрицательная, то и вывод должен быть отрицательным. Например:

Перейти на страницу:

Дмитрий Гусев читать все книги автора по порядку

Дмитрий Гусев - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Краткий курс логики: Искусство правильного мышления отзывы

Отзывы читателей о книге Краткий курс логики: Искусство правильного мышления, автор: Дмитрий Гусев. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*