Сергей Мусский - 100 великих чудес техники
Корпус и днище конвертера футеруют огнеупорным кирпичом. Подача кислорода в ванну конвертера для продувки металла осуществляется через специальную фурму, вводимую в горловину конвертера.
Первой операцией конвертерного процесса является загрузка скрапа. Конвертер наклоняют на некоторый угол от вертикальной оси и специальным коробом-совком вместимостью через горловину загружают в конвертер скрап – железный и стальной лом. Обычно загружают 20-25 процентов скрапа на плавку. Если скрап не подогревают в конвертере, то затем сразу же заливают жидкий чугун. После этого конвертер устанавливают в вертикальное положение, через горловину в конвертер вводят кислородную фурму.
Для наводки шлака в конвертер по специальному желобу вводят шлакообразующие материалы: известь и в небольшом количестве железную руду и плавиковый шпат.
После окисления примесей чугуна и нагрева металла до заданных величин продувку прекращают, фурму из конвертера удаляют и сливают металл и шлак в ковши. Легирующие добавки и раскислители вводят в ковш.
Продолжительность плавки в хорошо работающих конвертерах почти не зависит от их вместимости и составляет 45 минут, продолжительность продувки – 15-25 минут. Каждый конвертер в месяц дает 800—1000 плавок. Стойкость конвертера – 600—800 плавок.
Движение металла в конвертере весьма сложное, помимо кислородной струи, на жидкую ванну воздействуют пузыри оксида углерода. Процесс перемешивания усложняется еще и тем, что шлак проталкивается струей газа в толщу металла и перемешивается с ним. Движение ванны и вспучивание ее выделяющимся оксидом углерода приводят значительную часть жидкого расплава в состояние эмульсии, в которой капли металла и шлака тесно перемешаны друг с другом. В результате этого создается большая поверхность соприкосновения металла со шлаком, что обеспечивает высокие скорости окисления углерода.
Конвертеры с донной продувкой кислородом из-за меньшего угара железа позволяют получить больший (на 1,5-2 процента) выход годной стали по сравнению с конвертерами с верхней продувкой. Плавка в 180-тонном конвертере с донной продувкой длится 32-39 минут, продувка – 12-14 минут, то есть производительность выше, чем у конвертеров с верхней продувкой. Однако необходимость промежуточной замены днищ нивелирует это различие в производительности.
Первые конвертеры с донной продувкой за рубежом были построены в 1966—1967 годах. Необходимость создания такого конвертера обусловлена, в основном, двумя причинами. Во-первых, необходимостью переработки чугунов с повышенным содержанием марганца, кремния и фосфора, поскольку передел такого чугуна в конвертерах с верхней продувкой сопровождается выбросами металла в ходе продувки и не обеспечивает должной стабильности химического состава готовой стали. Во-вторых, тем, что конвертер с такой продувкой является наиболее приемлемой конструкцией, позволяющей осуществить реконструкцию существующих бессемеровских и томасовских цехов, и вписывается в здание существующих мартеновских цехов. Этому конвертеру свойственно наличие большого числа реакционных зон, интенсивное окисление углерода с первых минут плавки, низкое содержание оксидов железа в шлаке. В силу специфики работы сталеплавильной ванны при донной продувке в конвертерах подобного типа выход годного несколько выше, чем в других конвертерах, а запыленность отходящих газов ниже.
В конвертерах с донной продувкой, имеющих большое число фурм, все технологические процессы протекают интенсивнее, чем в конвертерах с верхней продувкой Однако общая производительность конвертеров с донной продувкой не превышает значительно таковую для конвертеров с верхней продувкой по причине ограниченной стойкости днищ.
Чтобы предохранить кладку днища конвертера от действия высоких температур, фурму делают в виде двух коаксиальных трубок – по центральной подается кислород, а по периферийной – какое-либо углеводородное топливо, чаще всего природный газ. Таких фурм обычно 16-22. Большое число более мелких фурм обеспечивает лучшее перемешивание ванны и более спокойный ход плавки.
Струя топлива отделяет реакционную зону от днища, снижает температуру около днища в месте выхода кислородных струй за счет отбора тепла на нагрев топлива, крекинг и диссоциации составляющих топлива и продуктов их окисления. Охлаждающий эффект, кроме того, обеспечивается пылевидной известью, которая подается в струю кислорода. Таким образом, продувка расплавленного металла несколькими струями кислорода снизу создает ряд благоприятных особенностей в работе конвертера. Обеспечивается большее число реакционных зон и большая межфазная поверхность контакта кислородных струй с металлом. Это позволяет увеличить интенсивность продувки, повысить скорость окисления углерода. Улучшается перемешивание ванны, повышается степень использования кислорода. В результате появляется возможность расплавления больших по массе кусков скрапа. Лучшая гидродинамика ванны обеспечивает более ровный и спокойный ход всей плавки, практически исключает выбросы. В силу этого в конвертерах с донной продувкой можно перерабатывать чугуны с повышенным содержанием марганца и фосфора.
Стремление повысить производительность агрегатов одновременно с необходимостью повысить однородность состава и температуры металла при возможности изготовления сталей широкого диапазона привело к использованию комбинированной продувки при относительно небольшом (по сравнению только с донной продувкой) количестве газов, вдуваемых через фурмы, установленные в днище конвертера. В последнее время появилось два основных варианта такого процесса, когда снизу подают кислород или инертные газы с целью обеспечить интенсивное перемешивание ванны и ускорить процесс удаления примесей. При этом, как и при донной продувке, снизу вместе с газами может подаваться пылевидная известь. По такому важному показателю, как возможный расход скрапа, конвертеры с верхней, донной и комбинированной продувкой оказываются приблизительно на одном уровне, при несколько более высоком выходе годного при донной продувке.
В настоящее время в мире применяется и разрабатывается много различных методов комбинированной продувки расплавленной ванны, рационально сочетающих верхнюю и донную продувку, причем в последней используется как кислород, так и инертные газы (аргон, азот).
В кислородно-конвертерном процессе с верхней продувкой достаточно интенсивное перемешивание достигается только в середине плавки при интенсивном окислении углерода. В начале и в конце плавки перемешивание недостаточно, что затрудняет глубокое рафинирование металла от серы и фосфора. Комбинированная подача кислорода через верхнюю и донные фурмы еще более, чем при одной донной продувке, ускоряет процесс окисления углерода и повышает производительность конвертера.
По сравнению с чисто донной продувкой в случае комбинированного процесса в сопоставимых условиях температура металла выше. Кроме того, при комбинированной продувке уменьшение расхода кислорода через верхнюю фурму снижает пылеобразование и разбрызгивание.
И еще одно преимущество кислородных конвертеров: здесь все процессы механизированы и автоматизированы, все чаще управление конвертерами поручается компьютерам.
Дуговые электроплавильные печи
Вся история металлургии – это борьба за качество, за улучшение физических и механических свойств металла. А ключ к качеству – химическая чистота. Даже крохотные примеси серы, фосфора, мышьяка, кислорода, некоторых других элементов резко ухудшают прочность и пластичность металла, делают его хрупким и слабым. А все эти примеси находятся в руде и коксе, и избавиться от них трудно. Во время плавки в доменной печи и в мартеновской печи основная часть примесей переводится в шлак и вместе с ним удаляется из металла. Но в тех же домнах и мартенах в металл попадают вредные элементы из горючих газов и ухудшают его свойства. Получить действительно высококачественную сталь помогла электрометаллургия, отрасль металлургии, где металлы и их сплавы получают с помощью электрического тока. Это относится не только к выплавке стали, но и к электролизу металлов и, в частности, расплавленных их солей – например, извлечению алюминия из расплавленного глинозема.
Основную массу легированной высококачественной стали выплавляют в дуговых электрических печах.
В дуговых сталеплавильных печах и плазменно-дуговых печах (ПДП) теплогенерация возникает за счет энергетических преобразований дугового разряда, происходящего в воздухе, парах расплавляемых материалов, инертной атмосфере или иной плазмообразующей среде.
Согласно общей теории печей М.А. Глинкова дуговые сталеплавильные и плазменно-дуговые печи представляют собой печи-теплообменники с радиационным режимом работы, поскольку энергетические условия на границе зоны технологического процесса, то есть на зеркале ванны жидкого металла, создают электрические дуги и огнеупорная футеровка рабочего пространства. Кроме этого, в дуговых сталеплавильных печах вертикально расположенные графитированные электроды создают неравномерное излучение дуг, зависящее от диаметра электродов и параметров электрического режима.