Владимир Максаковский - Географическая картина мира Пособие для вузов Кн. I: Общая характеристика мира. Глобальные проблемы человечества
В 1991–2000 гг. Среднегодовые темпы прироста ВВП в развитых странах составили 2,4 %, а потребление привычных энергоресурсов – 1,22, в 2000–2010 гг. аналогичные показатели должны составить 2,4 и 0,7 %.
Статистика свидетельствует о том, что в 2000–2006 гг., несмотря на экономический рост, объем потребляемого топлива в США увеличился лишь на 3 %, в Японии, Франции, Норвегии – всего на 1,5 %, в Великобритании он остался на прежнем уровне, а в Германии, Швейцарии и Швеции даже снизился.
В отличие от стран Запада в странах Центрально-Восточной Европы, СНГ, Китае обстановка меняется гораздо медленнее, и их экономика остается еще весьма энергоемкой. То же относится и к большинству развивающихся стран, вступивших на путь индустриализации. Например, в странах Азии и Африки потери попутного природного газа, добываемого вместе с нефтью, составляют 80—100 %.
При характеристике перспектив глобальной энергетической проблемы необходимо особо остановиться на использовании принципиально новых путей ее решения, связанных с достижениями современного этапа НТР.
Во-первых, это относится к будущему развитию атомной энергетики, где уже начинает входить в эксплуатацию новое поколение атомных реакторов. Ее позиции могут значительно укрепиться. К тому же в последнее время снова стали обсуждать вопрос о судьбе реакторов на быстрых нейтронах (РРБН). Когда-то они были задуманы как вторая, гораздо более эффективная «волна» атомной энергетики, позволяющая использовать не только уран-235, но и уран-238. Но затем работы над ними были свернуты.
Во-вторых, уже давно ведутся работы по прямому преобразованию тепловой энергии в электрическую, минуя паровые котлы и турбины, при помощи МГД (магнитогидродинамических) – генераторов. Еще в 1971 г. в Москве была пущена первая опытно-промышленная установка такого типа мощностью 25 тыс. кВт. Достоинства МГД-генераторов заключаются в высоком КПД, отсутствии вредных выбросов в атмосферу, возможности быстрого, в течение нескольких секунд, запуска.
В-третьих, положено начало созданию криогенного турбогенератора, в котором за счет охлаждения ротора жидким гелием достигается эффект сверхпроводимости. Достоинства такого турбогенератора – небольшие габариты и масса, высокий КПД. Опытно-промышленный образец его мощностью в 20 тыс. кВт был создан в СССР (Ленинград), теперь подобные работы ведут в США, Японии, других странах.
В-четвертых, очень большие перспективы имеет использование в качестве топлива водорода. По мнению некоторых специалистов, этот путь может коренным образом изменить всю будущую техногенную цивилизацию. По-видимому, наибольшее применение водородное топливо найдет сначала в автомобилестроении. Во всяком случае, первый водородный автомобиль еще в начале 1990-х гг. выпустила японская «Мазда». Для него была разработана и новая конструкция двигателя.
В-пятых, продолжаются работы, начатые в свое время выдающимся отечественным физиком академиком А. Ф. Иоффе, по созданию электрохимических генераторов или топливных элементов.
Основным горючим в топливных элементах также служит водород, который пропускают через полимерные мембраны с катализатором. При этом происходит химическая реакция с кислородом воздуха, и водород превращается в воду, а химическая энергия его сгорания – в электрическую. Главные достоинства двигателя на топливных элементах – очень высокий КПД (65–70 % и более), что вдвое выше обычных двигателей. К его достоинствам относятся также удобство применения, нетребовательность к ремонту, бесшумность при работе.
До недавнего времени топливные элементы конструировали только для специальных целей – например, для космических исследований. Но теперь работы по их более широкому применению ведутся во многих экономически развитых странах, среди которых первое место занимает Япония. По оценкам специалистов, их общая мощность в мире ныне измеряется уже миллионами киловатт. В Токио и Нью-Йорке построены электростанции, работающие на топливных элементах. А германский «Даймлер-Бенц» стал первым в мире автомобильным концерном, сумевшим создать действующий прототип машины с двигателем на топливных элементах.
Наконец, в-шестых, речь должна идти о самом главном – об управляемом термоядерном синтезе (УТС).
Тогда как атомная энергетика основана на реакции деления ядер, в основе термоядерной лежит обратный процесс слияния ядер изотопов водорода, в первую очередь дейтерия, а также трития. В этом случае при ядерном сжигании 1 кг дейтерия выделяется в 10 млн раз больше энергии, чем при сжигании 1 кг угля. Но чтобы термоядерная реакция началась, нужно разогреть плазму до температуры в 100 млн градусов (на поверхности Солнца она достигает «всего» 6 млн градусов). Если иметь в виду термоядерную или водородную бомбу, то люди уже научились ее (плазму) производить, но на стотысячную-миллионную долю секунды. Вот почему основные усилия направлены на то, чтобы удержать разогретую плазму, создав тем самым условия для управляемого термоядерного синтеза.
Для этого используют установки разных типов, но наибольшее распространение получил предложенный академиками А. Сахаровым и И. Таммом в 1950-х гг. реактор «Токамак» (тороидальная камера в магнитном поле). На установке «Токамак-10» советским ученым удалось разогреть плазму сначала до 10, затем до 25 и 30 млн градусов. В Принстонском университете (США) ученые разогрели ее до 70 млн градусов. Пока все это – экспериментальные (демонстрационные) реакторы. Обычно отмечают и относительную безопасность термоядерного реактора для окружающей среды, что также служит важным аргументом. По словам И. В. Бестужева-Лады, здесь «никаким Чернобылем не пахнет».
Надо иметь в виду и то, что главный ресурс термоядерной энергетики – это ресурс дейтерия, содержащегося в водах Мирового океана в концентрации около 0,015 % (так называемая тяжелая вода). Согласно современным расчетам, при использовании этих ресурсов дейтерия потенциальная выработка электроэнергии могла бы составить 4,4 *1024 кВт*ч, что в пересчете на тепловой эквивалент примерно в 60 млн раз превышает современный уровень мирового энергопотребления. Следовательно, термоядерную энергию можно рассматривать как практически неисчерпаемую. Только в отличие от геотермальной, солнечной, приливной, ветровой она создается руками человека.
Очень важно, что основные исследования по управляемому термоядерному синтезу проводятся в условиях постоянного обмена научной информацией между странами, при координации их Международным агентством по атомной энергии.
В первую очередь они концентрируются вокруг проекта ПТЭР (Международный исследовательский термоядерный реактор), работа над которым началась еще в конце 70-е гг. и успешно продолжается, несмотря на выход из него США. Для сооружения ПТЭР уже выбрана площадка во Франции (Кадараш). Работа, начатая в 2007 г. продолжится по-видимому 8– 10 лет. Ожидается, что ПТЭР позволит разогреть плазму до температуры в 150 млн градусов и удерживать ее в таком состоянии в течение 500 секунд.
Рис. 151. Прогноз роста мирового энергопотребления до 2060 г.
Существует много сценариев развития мировой энергетики на долгосрочную перспективу. По некоторым из них глобальное энергопотребление в середине XXI в. увеличится до 20 млрд т (в нефтяном эквиваленте), причем по объему этого потребления развивающиеся страны к этому времени обгонят развитые (рис. 151). А к 2100 г. даже при среднем варианте глобальное энергопотребление может возрасти до 30 млрд тут (рис. 152).
Одновременно произойдут и важные структурные изменения: уменьшится доля ископаемых видов топлива и возрастет доля возобновляемых, в особенности, нетрадиционных возобновляемых источников энергии (НВИЭ) – таких как солнечная, ветровая, геотермальная и приливная. Все они принципиально отличаются от традиционных источников минерального топлива своей возобновляемостью и экономической эффективностью. Большие перспективы имеет и использование биотоплива, в особенности биоэтанола. Американские ученые-футурологи предполагают, что к 2010 г. альтернативные источники будут давать уже 10 % производимой в мире энергии, к 2016 г. КПД энергетических установок возрастет до 50 %, к 2017 г. начнется повсеместное использование топливных батарей, а с 2026 г. – коммерческое использование термоядерных реакторов.
Из всего сказанного напрашивается вывод о том, что для крайне пессимистического взгляда на энергетическое будущее человечества вряд ли есть достаточные основания. Конечно, может произойти истощение отдельных бассейнов топлива, которое повлияет и на судьбу отдельных районов горной промышленности. Но перспектива абсолютного недостатка топлива все же маловероятна. Все-таки суммарные разведанные запасы большинства топливных ископаемых обеспечивают возможность сохранения достаточно высоких уровней добычи – по крайней мере до середины XXI в., когда может вовсю заработать термоядерная энергетика.