Александр Потупа - Бег за бесконечностью
Вероятно, первым, кто отнесся к эффекту утечки заряда со всей серьезностью, как к предмету исследования, а не просто досадной помехе, был французский ученый Ш. Кулон — военный инженер, который увлекся изучением электричества уже на полувековом рубеже своей жизни и успел сформулировать основные законы взаимодействия покоящихся зарядов и магнитов.
Основываясь на исключительно тщательных измерениях, Ш. Кулон убедился, что количество электричества на проводнике, окруженном воздухом, быстро убывает с течением времени. Он попытался и объяснить этот эффект наиболее правдоподобным образом под ставки и окружающий воздух, полагал Ш. Кулон, не являются идеальными изоляторами, часть заряда уходит через подставку, часть — уносится частицами воздуха, которые сталкиваются с проводником, захватывают долю заряда и потом отлетают под действием сил отталкивания (ведь на частицах воздуха и на проводнике заряды одного знака).
Такое простое и наглядное объяснение продержалось в физике до начала нашего века, пока не было твердо установлено, что действие радиации, в частности гамма-излучения, ведет к созданию условий для утечки заряда. С другой стороны, исследователи обнаружили, что радиоактивные вещества рассеяны по всей земной коре (как раз в это время закладывался фундамент радиационной геофизики). И, наконец, прямые измерения скорости самопроизвольного разряда электроскопа в различных условиях показали, что хорошая экранировка свинцовыми пластинками заметно замедляет утечку.
Все эти факты свидетельствовали о недостаточности гипотезы Ш. Кулона. Многие физики стали думать, что утечка связана с влиянием гамма-лучей, испускаемых элементами земной коры. Эта идея оказалась весьма популярной, хотя и недолговечной. Как всегда, были сомневающиеся, которые говорили о совсем иных источниках излучения, действующего на электроскопы Законы разряда одинаковы в различных точках земного шара, указывали они, и трудно поверить, что радиоактивные вещества распределены абсолютно равномерно, скорее всего, излучение должно иметь какие-то внеземные и очень удаленные области возникновения, тогда, и только тогда, становится понятным его равномерное распределение по всей поверхности Земли…
И вот в такой ситуации именно сомневающиеся получили неожиданную поддержку благодаря включению в игру нового средства исследований. Это новое средство — воздушные шары, позволяющие эксплуатировать многокилометровые толщи атмосферы в качестве уникального экрана. Если поток радиации исходит из земных недр, то на достаточном удалении от поверхности он будет уменьшаться из-за экранировки воздухом, и, наоборот, поток космической радиации должен возрастать по мере удаления от Земли. Итак, возникла остроумная идея — проверить закономерности разряда электроскопа на различных высотах.
Надо сказать, что воздухоплавание начала нашего века делало свои «вторые шаги», выходило из области увлечения полетами как таковыми в область научных исследований в атмосфере. Здесь стоит отметить интересную аналогию с совсем уже близкими нам событиями. После первых успешных запусков искусственных спутников Земли и детальной отработки программы полетов центр тяжести переместился в область создания крупных орбитальных научных станций, способных собирать огромную информацию об околоземном и межпланетном пространстве. И одним из важнейших достижений космических лабораторий было продолжение и всестороннее развитие тех работ по изучению внеземных излучений, которые были начаты в 1909 году швейцарцем К. Гёккелем, впервые установившем электроскоп на воздушном шаре.
К. Гёккель обнаружил, что на высоте 4 километров электроскоп теряет заряд быстрее, чем на поверхности Земли. Примерно через четыре года серию аналогичных опытов завершил физик из Австрии В. Гесс. Его данные были достаточно полны для того, чтобы сделать важнейший вывод — излучение, вызывающее «самопроизвольный» разряд электроскопа, не связано с земной корой, оно имеет либо космическое, либо атмосферное происхождение. Сам В. Гесс больше склонялся к первому варианту, а второй рассматривал, скорее всего, как возможное сопровождающее явление или не до конца исключенную альтернативу. За такую удивительную прозорливость и, конечно, за получение первых доказательных результатов он был впоследствии удостоен Нобелевской премии.
Между тем окончательный выбор модели затянулся еще примерно на 10 лет из-за обилия противоречивых экспериментальных данных. Физики так и не смогли получить убедительных доказательств космической гипотезы из заоблачных высот. И тогда они сделали внешне парадоксальный, но, по сути дела, простой до очевидности «ход конем»: решили извлечь истину буквально из-под земли. Начиная с 1923 года, были проведены три серии глубинных экспериментов. Ионизационные свойства излучения были изучены с помощью приборов, установленных в глубокой альпийской расщелине, на 20-метровой глубине одного из калифорнийских озер и, наконец, на различных глубинах (вплоть до 220 метров!) озера Констанца.
Результаты этих исследований фактически закрыли атмосферную гипотезу. Стало ясно, что новый вид радиации обладает фантастической проникающей способностью. Мало того, что излучение пронизывало всю земную атмосферу, оно проникало сквозь слой воды, эквивалентный утроенной толщине атмосферы.
Отсюда следовало, что частицы нового излучения должны обладать огромными энергиями, в тысячу и более раз превосходящими энергии, характерные для земных радиоактивных источников.
Итак, поиски на земле, в небе, под землей и под водой увенчались замечательной находкой: был обнаружен тщательно замаскированный природой клад, размеры которого до сих пор не так-то просто оценить — клад, открывший совершенно новую эпоху в изучении структуры вещества, позволивший в буквальном смысле по-новому взглянуть на вселенную. При этом физики столкнулись с двумя захватывающими проблемами. Во-первых, нужно было немедленно постигать законы поведения элементарных частиц и атомных ядер при очень высоких энергиях. Во-вторых, стало ясно, что вселенная светится в потрясающе широком диапазоне частот и не только электромагнитными волнами, но и буквально всей таблицей Менделеева — от протонов до тяжелых ядер.
Следовательно, гигантские межзвездные и межгалактические пространства не какие-нибудь «хладные пустыни», где нет-нет, да и скользнет одинокий луч света, а вместилища сверхгорячего, хотя и очень разреженного, газа микрочастиц. Следовательно, космос живет бурной жизнью — в недрах звезд непрерывно происходят ядерные превращения, и сигналы об этих событиях уходят в космос… И еще появилось множество поражающих воображение «следовательно», и родились новые, достойные наших усилий проблемы.
В 1925 году американский физик Р. Милликен — один из главных участников заоблачных и подводных экспериментов — предложил для потоков высокоэнергетических частиц, приходящих из космоса, очень удачное название — космические лучи. Их природа была окончательно установлена в 1927 году благодаря опытам советского физика Д. Скобельцына, который сфотографировал следы частиц космического излучения с помощью камеры Вильсона. В 1931 году Р. Милликен и Ч. Андерсон провели первое тщательное измерение энергии космических лучей. Для этого пришлось специально придумать метод ослабления пучка, ведь энергия космических частиц была так велика (порядка нескольких гигаэлектрон-вольт), что позволяла им практически не реагировать на отклоняющее магнитное поле!
На этом первооткрывательский период завершился, и космические лучи начали демонстрировать богатейшую копилку сюрпризов. Но, прежде чем мы займемся ее содержимым, давайте немного обсудим возникающие теперь «семейные проблемы».
В конце 20-х — начале 30-х годов физика элементарных частиц делает огромный шаг вперед. Открытие космических лучей, по сути дела, приводит к появлению нового раздела — физики высоких энергий. О точной дате рождения этой науки договориться не так уж и просто. Ее можно связать и с первыми доказательствами, добытыми на шарах, и с определяющими результатами экспериментов Д. Скобельцына. Я думаю, что именно пятилетие 1927–1931 годов было порогом, преодолев который исследователи смогли со всей определенностью сказать: мы имеем дело с новым типом объектов — элементарными частицами с очень высокими энергиями. Во всяком случае, возник основанный на результатах измерений количественный критерий для выделения особого предмета исследований.
Конечно, для выделения особой области исследований нужны не количественные, а уже качественные отличия основных объектов, иначе буквально к каждой цифре энергетического диапазона можно прикрепить по «бирочке» с каким-нибудь оригинальным названием! Но в физике качественная новизна, как правило, связана с преодолением некоторого количественного часто говорят, критического рубежа. Например, трудно усомниться в том, что твердое тело и жидкость — качественно разные состояния вещества. Не достаточно ли говорить об одном веществе, одновременно указывая температуру ниже или выше точки плавления? Оказывается, нет. При переходе не все свойства меняются непрерывным образом, скажем, высокая упорядоченность атомов в твердом теле возникает «скачкообразно».