Сэм Кин - Синдром Паганини и другие правдивые истории о гениальности, записанные в нашем генетическом коде
Все это замечательно, но в то же время двойная спираль не выдала никакой информации о том, как именно гены ДНК формируют белки, – а ведь именно это важнее всего. Чтобы понять этот процесс, ученым пришлось тщательно исследовать «химического родственника» ДНК – молекулу РНК. Эта молекула похожа на ДНК, но в ней закручена лишь одна нить, и вместо тимина (T) находится урацил (У). Биохимики обратились к РНК, поскольку концентрация этой кислоты резко возрастает, когда клетки начинают вырабатывать белки. Но когда они принялись за поиски РНК внутри клеток, оказалось, что эта кислота неуловима, подобно исчезающему виду птиц; удавалось обнаружить лишь крохи, которые тут же пропадали. Понадобились годы усердных экспериментов, чтобы точно установить, что происходит, – как именно клетки преобразуют последовательность оснований ДНК в инструкции для РНК, при помощи которых затем создаются белки.
Сначала клетки осуществляют «транскрипцию» ДНК в РНК. Этот процесс похож на копирование самой ДНК тем, что одна из ее нитей служит шаблоном. Так, последовательность Ц – Ц – Г– А – Г – Т оснований ДНК превратилась бы в молекуле РНК в последовательность Г – Г – Ц – У – Ц – А (основание У встает вместо Т). После сборки такая цепочка РНК выходит за пределы ядра и направляется к особым образованиям, которые занимаются производством белков, – рибосомам. Поскольку молекула РНК передает сообщение от одной стороны к другой, ее называют информационной или матричной РНК (мРНК).
Построение белка (трансляция) начинается в рибосомах. По прибытии мРНК рибосома захватывает ее недалеко от окончания и выявляет всего лишь три звена цепочки (трипле т). В нашем примере был бы обнаружен триплет ГГЦ. После этого к работе приступает второй тип РНК – транспортная РНК (тРНК). Каждая молекула тРНК содержит две основные части: аминокислоту, прикрепленную к ней (груз, который предстоит передать), и триплет РНК, который выступает, подобно мачте корабля. Различные молекулы тРНК могут попытаться прикрепиться к выявленному триплету РНК, но это пройдет успешно лишь тогда, когда основания окажутся комплементарными. Таким образом, к триплету ГГЦ может присоединиться лишь тРНК с фрагментом ЦЦГ. И только после успешного соединения рибосома принимает груз – аминокислоту.
В этот момент молекула тРНК уходит, молекула мРНК сдвигается на три позиции и все начинается заново. Выявляется другой триплет, к которому стыкуется молекула тРНК с другой аминокислотой. Так занимает свое место вторая аминокислота. В конце концов, после множества шагов создается цепочка аминокислот – белок. А поскольку каждому триплету РНК соответствует одна и только одна аминокислота, информация должна в точности быть передана от ДНК к РНК, а затем белку. Этот процесс происходит в каждом живом существе. Введите одну и ту же молекулу ДНК в морскую свинку, лягушку, тюльпан, слизевик, дрожжи, американского конгрессмена – и вы получите одинаковые цепочки аминокислот. Поэтому не удивительно, что в 1958 году Фрэнсис Крик возвел процесс «ДНК → РНК → белок» в ранг центральной догмы молекулярной биологии[12].
И тем не менее догма Крика не объясняет всех нюансов в создании белка. С одной стороны, можно заметить, что из четырех оснований ДНК можно составить 64 различных триплета (4 × 4 × 4 = 64). В то же время эти триплеты кодируют всего лишь двадцать аминокислот, которые содержат наши тела. Почему?
В 1954 году физик Георгий Гамов основал «научный» клуб галстуков РНК (RNA Tie Club). В частности, для того чтобы получить ответ на поставленный выше вопрос. Физик, который по совместительству занимается биологией, может выглядеть странно (Гамов тогда занимался радиоактивностью и теорией Большого взрыва), однако в этот клуб вступили и другие «инородные» ученые, вроде Ричарда Фейнмана. Но не только ДНК бросала интеллектуальный вызов. Многие физики были потрясены своей причастностью к созданию ядерных бомб. Казалось, что физика разрушает жизнь, а биология занимается ее восстановлением. Список участников клуба состоял из 24 человек, физиков и биологов, по одному на каждую аминокислоту, плюс четыре почетных члена по числу оснований ДНК. Уотсон и Крик были в числе членов клуба (Уотсон выступал в официальной роли Оптимиста, а Крик – в роли Пессимиста). Каждый участник щеголял зеленым галстуком (стоимостью 4 доллара), на котором золотым шелком была вышита спираль ДНК. Галстуки были выполнены на заказ одним из галантерейщиков Лос-Анджелеса. На канцелярских принадлежностях клуба был нанесен девиз: «Сделай или умри. Или даже не пытайся».
Участники клуба галстуков РНК щеголяют зелеными галстуками, на которых золотым шелком вышита спираль ДНК. Слева направо: Фрэнсис Крик, Александр Рич, Лесли И. Оргел, Джеймс Уотсон. Фото любезно предоставил Александр Рич
Несмотря на совместную интеллектуальную мощь, история клуба завершилась в некоторой степени глупо. Физиков зачастую притягивают проблемы повышенной сложности, и вот некоторые участники клуба с «физическим» складом ума (включая Крика, со степенью доктора философии) ринулись работать с ДНК и РНК, не осознав, насколько простым был процесс «ДНК → РНК → белок». Они сосредоточились главным образом на том, как ДНК хранит инструкции, и почему-то решили сначала, что ДНК должна скрывать свои инструкции в виде сложного кода – биологической криптограммы. Ничто так не увлекает компанию мальчишек, как закодированные сообщения. И тогда Гамов, Крик и другие участники принялись подобно компании десятилетних ребят с пачкой чипсов в руках за взлом этого шифра. Вскоре они уселись за рабочие столы и начали исписывать расчетами страницу за страницей. Воображение было удачно раскрепощено при помощи экспериментов. Они выдумали решения: достаточно мудреные, чтобы заставить Уилла Шортца улыбнуться – «ромбовидные коды», «треугольные коды», «коды в виде запятой», а также множество других, уже забытых. Эти коды пришлись бы по вкусу Управлению национальной безопасности: обратимые коды, коды со встроенными механизмами защиты от ошибок, коды, увеличивающие плотность хранения за счет перекрывающихся триплетов. Парням из Управления очень нравятся коды, которые используют анаграммы (то есть ЦАГ = АЦГ = ГЦА и др.). Такой подход выглядел обоснованным, поскольку после изъятия всех повторяющихся комбинаций число уникальных триплетов в точности равнялось двадцати. Другими словами, ученые, казалось бы, нашли связь между числами 20 и 64 – причину, по которой природа просто обязана использовать 20 аминокислот.
По правде говоря, во всем этом было слишком много нумерологии. Неоспоримые биохимические факты вскоре умерили пыл взломщиков кода, показав, что не существует убедительной причины для того, чтобы молекула ДНК кодировала именно 20 аминокислот, а не 19 или 21. Не нашлось также веских оснований (как надеялись некоторые) для того, чтобы каждому триплету соответствовала бы определенная аминокислота. Система в целом оказалась случайной, внедренной в клетки миллиарды лет назад, и теперь настолько укоренилась, что ее невозможно изменить – своего рода порядок расположения букв на клавиатуре компьютера. Более того, в РНК не используется никаких забавных анаграмм или алгоритмов коррекции ошибок, а уж тем более нет стремления к увеличению свободного пространства. В действительности наш код сводится к расточительному излишеству: два, четыре и даже шесть триплетов РНК могут представлять одну и ту же аминокислоту[13]. Некоторые биокриптографы чуть позже испытали досадное чувство, когда сравнили природные коды с лучшими из кодов клуба галстуков РНК. Эволюционный процесс не показался таким уж мудрым.
Однако вскоре досада растворилась. Разгадка кода ДНК/ РНК наконец позволила ученым объединить две разделенные области генетики, которые рассматривали ген как информацию и ген как химическое вещество. Мишер и Мендель впервые оказались крепко объединены. А то, что код ДНК построен так небрежно, в некоторых случаях оказывается только выигрышным. Выдуманные коды обладают приятными свойствами, но чем причудливее становится код, тем больше вероятность того, что он даст сбой. И какими бы небрежными ни были наши коды, они прекрасно справляются с одной задачей: поддержание жизни и минимизация повреждений, вызванных мутациями. Именно на эту замечательную способность и пришлось положиться Цутому Ямагучи, а также многим другим, в августе 1945 года.
* * *Ранним утром 8 августа Ямагучи в обморочном состоянии приехал в Нагасаки и побрел домой. Его семья решила, что он погиб, и ему пришлось убеждать свою жену в том, что он не призрак, показав ей свои ступни (согласно японским верованиям у призраков нет ступней). Этот день он провел в покое, то приходя в сознание, то вновь теряя его. Но при этом он твердо решил на следующий день отправиться в штаб-квартиру фирмы «Мицубиси», которая находилась в Нагасаки.