Kniga-Online.club
» » » » Джордан Элленберг - Как не ошибаться. Сила математического мышления

Джордан Элленберг - Как не ошибаться. Сила математического мышления

Читать бесплатно Джордан Элленберг - Как не ошибаться. Сила математического мышления. Жанр: Прочая научная литература издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

13

См.: J. von Neumann. Collected Works. Volume I: Logic, Theory of Sets and Quantum Mechanics. New York; London; Oxford; Paris: Pergamon Press, 1961. Pp. 1–9. [Приведенная далее цитата дается в пер. Ю. А. Данилова, см.: Ю. А. Данилов. Математик фон Нейман и его «Математик» // Природа. 1983. № 2. С. 86–87. Прим. перев.]

14

В настоящее время специалисты называют теорему Ферма теоремой Уайлса, поскольку Эндрю Уайлс доказал ее (не без помощи Ричарда Тейлора), тогда как Ферма не сделал этого. Однако, по всей вероятности, традиционное название неискоренимо и вряд ли будет когда-нибудь вытеснено.

15

Ее доказал Григорий Перельман. Прим. М. Г.

16

Это гипотеза. Прим. М. Г.

17

Правда, в двадцать с лишним лет я все-таки потратил какое-то время на нешуточные размышления, не стать ли мне настоящим писателем. Я даже написал и опубликовал вполне глубокомысленное литературное произведение – роман The Grasshopper King («Король кузнечиков»). Но пока я работал над ним, то обнаружил, что по полдня слоняюсь в тоске, мечтая лишь об одном: решать математические задачи.

18

Ю. А. Данилов. Математик фон Нейман и его «Математик». С. 86. Прим. М. Г.

19

Под «шведскостью» подразумевается вовсе не такая характерная особенность страны, как «всегда имеющаяся в наличии селедка под десятками разнообразных маринадов», а «уровень социального обеспечения и налогообложения» – состояние, к которому несомненно должны стремиться все без исключения государства.

20

Точнее, для этих и ряда последующих рассуждений автора существенна разница между монотонностью и немонотонностью. Прим. М. Г.

21

Или, если хотите, не линия, а линейный сегмент. Но я не собираюсь из этих терминологических расхождений раздувать целую проблему.

22

Гораций. Сатиры, II, 1, 106–107 / Пер. М. Дмитриева // Квинт Гораций Флакк. Оды, эподы, сатиры, послания. М.: Художественная литература, 1970. С. 248. Прим. ред.

23

Аристотель. Никомахова этика, кн. II, гл. 2, стр. 1104a / Пер. Н. Брагинской // Аристотель. Сочинения в четырех томах. М.: Мысль, 1983. Т. 4. С. 80. Прим. ред.

24

Фильм Джона Хьюза (1984), в котором роль преподавателя экономики сыграл известный экономический комментатор Бен Стайн. Прим. М. Г.

25

Эту часть истории Лаффер отрицает. По его словам, в ресторане были превосходные тканевые салфетки, которые он ни за что не стал бы портить экономическими закорючками.

26

Из книги «Физики шутят»: «Дирак любил потеоретизировать на самые различные темы. Однажды он высказал предположение, что существует оптимальное расстояние, на котором женское лицо выглядит привлекательнее всего; поскольку в двух предельных случаях – на нулевом и бесконечном расстоянии – “привлекательность обращается в нуль” (ничего не видно), то между этими пределами, естественно, должен существовать максимум» (Физики шутят / Составители-переводчики: Ю. Конобеев, В. Павлинчук, Н. Работнов, В. Турчин. М.: Мир, 1993). Прим. М. Г.

27

Примерно от 500 тысяч до 1 миллиона долларов в год в современном исчислении.

28

Похоже, я единственный, кто о ней вспомнил.

29

Американский политик Джек Френч Кемп в 1988 году проиграл на республиканских праймериз Бушу-ст., в 1996 году был кандидатом в вице-президенты (с Бобом Доулом). Прим. М. Г.

30

Трудно сказать наверняка, действительно ли увеличение объема налоговых поступлений было обусловлено тем, что богатые люди, освободившись от бремени подоходного налога, начали работать больше, как гласит теория предложения.

31

Или, что еще более вероятно, это вообще может быть не одна кривая, как показал Мартин Гарднер с помощью запутанной «неокривой Лаффера» в язвительной оценке теории предложения, изложенной в статье «Кривая Лаффера».

32

Ср. формализацию женской логики по Колмогорову: «Пусть [Р=>Q] и [Q приятно]; тогда Р»; см.: В. А. Успенский. Лермонтов, Колмогоров, женская логика и политкорректность // Неприкосновенный запас. 2000. № 6 (14). Прим. М. Г.

33

SAT (Scholastic Assessment Test, букв. «академический оценочный тест») – отборочный экзамен для выпускников школ на определение академических способностей. Прим. М. Г.

34

Кстати, нам неизвестно, кто первым доказал теорему Пифагора, хотя ученые почти убеждены, что это был не Пифагор. На самом деле, помимо засвидетельствованного современниками факта существования некоего ученого мужа с именем «Пифагор», жившего и обретшего славу в VI веке до нашей эры, мы ничего о нем не знаем. Основные сведения о жизни и работе Пифагора появились лишь через 800 лет после его смерти. К тому времени реального человека Пифагора полностью затмил миф о Пифагоре, вобравший в себя философские учения мыслителей, называвших себя пифагорейцами.

35

Российским ученым известно со школы, что пифагоровы штаны во все стороны равны. Прим. М. Г.

36

На самом деле нельзя, но до XVIII века никто не смог это доказать.

37

В действительности силосные башни не были круглыми до начала ХХ века, когда профессор Висконсинского университета Хорас У. Кинг не придумал – чтобы решить проблему порчи продукции, лежащей в углах башни, – цилиндрическую конструкцию, широко распространенную в наше время.

38

Точнее говоря, каждый из этих четырех фрагментов можно получить из исходного равнобедренного прямоугольного треугольника, вращая его по кругу на плоскости. Давайте примем без доказательств тот факт, что такие манипуляции не меняют площадь фигуры.

39

Во всяком случае, если вы, как и я, живете на Среднем Западе США.

40

Математический объект, который в каждой точке локально выглядит как обычное евклидово пространство, называется многообразием. Пример одномерного многообразия – окружность или любая другая кривая без углов и концов, например парабола. Примеры двумерных многообразий: сфера – поверхность шара; тор – поверхность баранки; крендель – поверхность кренделя; бутылка Клейна – в нашем обычном трехмерном пространстве невозможно представить эту поверхность, бутылка Клейна получается, если вытянуть горлышко обычной бутылки и соединить ее с донышком, предварительно проделав в нем дырку нужного размера и потом сгладив место соединения; фокус состоит в том, что вставить надо с внутренней стороны, иначе получится обычный тор, и при этом без пересечения стенки бутылки. Некоторые свойства многообразий описывает, в частности, уже упоминавшаяся гипотеза Пуанкаре. Прим. М. Г.

41

Дж. Беркли. Аналитик, или Рассуждение, адресованное неверующему математику… // Беркли Дж. Сочинения / Сост., общ. ред. и вступит. ст. И. С. Нарского; пер. А. Ф. Грязнова, Е. Ф. Дебольской, Е. С. Лагутина, Г. Г. Майорова, А. О. Маковельского. М.: Мысль, 1978. С. 425–426. Прим. М. Г.

42

При отсутствии воздействия силы тяжести, сопротивления воздуха и т. д. и т. п. Однако на коротком интервале времени такое линейное приближение является достаточно точным.

43

Самое время обратиться к Пушкину:Движенья нет, сказал мудрец брадатый.Другой смолчал и стал пред ним ходить.Сильнее бы не мог он возразить;Хвалили все ответ замысловатый.Но, господа, забавный случай сейДругой пример на память мне приводит:Ведь каждый день пред нами Солнце ходит,Однако ж прав упрямый Галилей.

Прим. М. Г.

44

По правде сказать, речь идет о подростках из летнего математического лагеря.

45

Есть объект, 2-адические числа, для которых этот довод, на первый взгляд бредовый, абсолютно корректен.

Согласно теории Коши, сходимость ряда к пределу x означает, что когда вы суммируете все больше и больше членов этого ряда, итоговая сумма все больше приближается к значению x. Чтобы понять это, мы должны представлять, что значит «близость» двух чисел друг к другу. Оказывается, знакомое нам значение слова «близость» не единственное! В мире 2-адических чисел два числа считаются близкими друг к другу, если разность между ними представляет собой величину, кратную большой степени числа 2. Когда мы говорим, что ряд 1 + 2 + 4 + 8 + 16 + … сходится к значению −1, мы тем самым утверждаем, что частичные суммы 1, 3, 7, 15, 31… все больше приближаются к −1. В обычном понимании «близости» это не так, однако при использовании понятия 2-адической близости ситуация обстоит совсем иначе. Разность между числами 31 и −1 равна 32, что составляет достаточно малое 2-адическое число 25. Просуммируйте еще несколько членов этого ряда – и получите число 511, которое отличается от −1 на 512, еще меньшую величину (в 2-адическом смысле). Большая часть математики, которую вы знаете (анализ, логарифмы и экспоненциальные функции, геометрия), имеет аналог в мире 2-адических чисел (а также аналог в мире p-адических чисел для любого p). Взаимодействие между всеми этими концепциями близости являет собой отдельную историю – умопомрачительную и недосягаемо прекрасную.

Перейти на страницу:

Джордан Элленберг читать все книги автора по порядку

Джордан Элленберг - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Как не ошибаться. Сила математического мышления отзывы

Отзывы читателей о книге Как не ошибаться. Сила математического мышления, автор: Джордан Элленберг. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*