Kniga-Online.club
» » » » РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров

РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров

Читать бесплатно РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров. Жанр: Прочая научная литература издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Давайте вернемся и рассмотрим последовательность ставок (сделок):

Мы уже знаем, что формула Келли не применима к этой последовательности, так как величины выигрышей и проигрышей отличаются. Ранее в этой главе мы усред­нили выигрыши и проигрыши и использовали эти средние значения в формуле Келли (так ошибочно поступают многие трейдеры). В результате, мы получили зна­чение f= 0,16. Было отмечено, что применение формулы Келли в данном случае некорректно и не дает нам оптимального f. Формула Келли работает только при постоянных выигрышах и проигрышах. Вы не можете усреднить торговые выигры­ши и проигрыши и получить истинное оптимальное f, используя формулы Келли. Наибольшее значение TWR при такой последовательности ставок (сделок) достигается при 0,24 (т.е. 1 доллар на каждые 71 доллар на счете). Это оптималь­ный геометрический рост, которого можно достичь при данной последователь­ности ставок (сделок) при торговле фиксированной долей. Давайте посмотрим, как меняется TWR при повторении этой последовательности ставок от 1 до 100 при f = 0,16 и f = 0,24. Мы видим, что использование значения f, которое ошибочно получено из формулы Келли, дало только 37,5% дохода, полученного при оптимальном f = 0,24 после 900 ставок или сделок (100 циклов из серий по 9 сделок). Другими словами, оптимальное f= 0,24, которое только на 0,08 отлича­ется от 0,16 (смещено от оптимального на 50%), принесло почти на 167% прибы­ли больше, чем f = 0,16 за 900 ставок!

Давайте повторим эту последовательность сделок еще 11 раз, чтобы в общей сложности получить 999 сделок. Теперь TWR для f=0,16 составляет 8563,302 (даже меньше, чем при f= 0,24 за 900 сделок), а TWR для f==0,24 составляет 25451,045. При 999 сделках эффективность при f= 0,16 составляет только 33,6% от f= 0,24, то есть прибыль при f== 0,24 на 197% больше, чем при f= 0,16!

Как видите, использование оптимального f не дает большого преимущества на коротком временном отрезке, но с течением времени оптимальное f оказыва­ет все большее влияние. Дело в том, что при торговле с оптимальным f надо дать программе время, а не ждать чуда на следующий день. Чем больше времени (то есть ставок или сделок) проходит, тем больше становится разница между стратегией оптимального f и любой другой стратегией управления деньгами.

Средняя геометрическая сделка

Трейдеру может быть интересно рассчитать свою среднюю геометрическую сделку (то есть среднюю прибыль, полученную на контракт за сделку), допуская, что прибыли реинвестируются, и торговать можно дробными контрактами. Это и есть математическое ожидание, когда торговля ведется на основе фиксирован­ной доли. В действительности это приблизительный доход системы за сделку при использовании фиксированной доли счета. (На самом деле средняя геометрическая сделка является математическим ожиданием в долларах на контракт за сделку. Вычитая из среднего геометрического единицу, вы получите математическое ожидание. Среднее геометрическое 1,025 соответствует математическому ожида­нию в 2,5% за сделку). Многие трейдеры смотрят только на среднюю сделку ры­ночной системы, чтобы понять, стоит ли торговать по этой системе. Однако при принятии решения следует обращать внимание именно на среднюю геометри­ческую сделку (GAT).

где G = среднее геометрическое - 1;

f = оптимальная фиксированная доля.

(Разумеется, наибольший убыток всегда будет отрицательным числом).

Допустим, что система имеет среднее геометрическое 1,017238, наибольший про­игрыш составляет 8000 долларов и оптимальное f = 0,31. Наша геометрическая средняя сделка будет равна:

GAT = (1,017238 - 1) * (-$8 000 /-0,31) = 0,017238 * $25 806,45= $444,85

Почему необходимо знать оптимальное f вашей системы

График на рисунке 1-6 еще раз демонстрирует важность использования опти­мального f в торговле фиксированной долей. Вспомните f для игры с броском мо­неты 2:1 (рисунок 1-1).

Давайте увеличим выигрыш с 2 до 5 единиц (рисунок 1-6). В этом случае опти­мальное f = 0,4, то есть ставка в 1 доллар на каждые 2,50 доллара на счете. После 20 последовательностей +5,-1 (40 ставок) ваш счет в 2,50 доллара вырастет до 127,482 доллара, и все благодаря оптимальному f. Теперь посмотрим, что произой­дет, если вы ошибетесь с оптимальным f на 0,2. При значениях f= 0,6 и f= 0,2 вы не заработаете даже десятой части того, что заработаете при 0,4. Эта ситуация (50/50, 5 к 1) имеет математическое ожидание (5 * 0,5) + (1 * (-0,5)) = 2, однако если вы будете делать ставки, используя значение f больше 0,8, то потеряете деньги.

Здесь надо отметить два момента. Первый состоит в том, что когда мы обсуж­даем TWR, то допускаем использование дробных контрактов. Например, вы мо­жете торговать 5,4789 контрактами, если именно это требуется в какой-либо мо­мент. Расчет TWR допускает дробные контракты, чтобы его значение всегда было одинаково для данного набора торговых результатов вне зависимости от их после­довательности. Вы можете усомниться в правильности такого подхода, поскольку при реальной торговле это невыполнимо. В реальной жизни вы не можете торго­вать дробными контрактами. Этот аргумент правильный. Однако мы оставим по­добный расчет TWR, потому что таким образом мы представим средний TWR для всех возможных начальных счетов. Если вы хотите, чтобы размеры всех ставок были целыми числами, тогда становится важна величина начального счета. Одна­ко если бы вы должны были усреднить TWR со всех значений возможных началь­ных счетов, используя только ставки в целых числах, то достигли бы того же зна­чения TWR, которое мы рассчитали при дробных ставках. Поэтому значение TWR, которое рассчитано здесь, более реально, чем то, которое мы рассчитывали бы при ставках в целых числах, так как оно представляет огромное количество результатов с различными начальными счетами. Разумеется, чем выше баланс счета, тем ближе будут результаты торговли целыми и дробными контрактами. Пределом здесь является счет с бесконечным капиталом, где ставка в целых чис­лах и дробная ставка в точности равны.

Таким образом, чем ближе вы находитесь к оптимальному f, тем лучше. Также можно сказать, что чем больше счет, тем больше будет эффект от оптимального f. Так как оптимальное f позволяет счету расти с максимально возможной скорос­тью, мы можем заявить, что оптимальное f будет работать все лучше и лучше при увеличении вашего счета.

Рисунок 1-6 20 последовательностей +5, -1

Графики (рисунки 1-1 и 1-6) имеют несколько других интересных особеннос­тей. Во-первых, ни при какой другой фиксированной доле вы не заработаете боль­ше денег, чем при оптимальном/. Другими словами, в предыдущем примере с иг­рой 5:1 не стоит ставить, например, 1 доллар на каждые 2 доллара на счете. Вы заработаете больше, если будете ставить 1 доллар на каждые 2,50 доллара на сче­те. Не стоит рисковать больше, чем позволяет оптимальное/, — это может доро­го обойтись.

Очевидно, что чем больше капитализация счета, тем более точно вы сможете придерживаться оптимального f, так как сумма в долларах, требуемая под один контракт, составит меньший процент от общего баланса. Допустим, что оптималь­ное f для данной рыночной системы соответствует 1 контракту на каждые 5000 дол­ларов на счете. Если счет равен 10 000 долларов, то надо будет выиграть (или проиг­рать) 50% до того момента, когда изменение количества контрактов для текущей торговли станет возможным. Сравните это со счетом в 500 000 долларов, где надо будет регулировать количество контрактов после изменения баланса в 1%. Ясно, что при большом счете можно лучше воспользоваться плюсами, предоставляемыми оптимальным f, чем при меньшем счете. Теоретически оптимальное f допускает, что вы можете торговать бесконечно делимыми частями, чего в реальной жизни не бывает, где наименьшим количеством, которым вы можете торговать, является один контракт. В асимптотическом смысле это не имеет значения. Но в реальной жизни со ставками в целых числах в торговую систему необходимо ввести такой ва­риант, который потребует настолько малый процент баланса счета, насколько толь­ко возможно, особенно для небольших счетов. Помните, что сумма, требуемая для открытия контракта, в реальной торговле больше первоначальных залоговых тре­бований и суммы, отводимой под контракт оптимальным f.

Чем чаще вы сможете изменять размер позиций для соответствия оптимально­му f, тем лучше, поэтому имеет смысл торговать на рынках с недорогими кон­трактами. Кукуруза может показаться не таким интересным рынком, как S&P. Од­нако для некоторых трейдеров рынок кукурузы может стать чрезвычайно волную­щим, если они будут открывать на нем несколько сотен контрактов.

Трейдеры, торгующие акциями или форвардными контрактами (например на рынке форекс), имеют огромное преимущество. Так как следует рассчитывать оп­тимальное f из финансовых результатов (P&Ls) на основе 1 контракта (1 единицы), то надо сначала решить, какой будет 1 единица в акциях или в валюте. Например, трейдер с фондового рынка может выбрать в качестве 1 единицы 100 акций. Для определения оптимального Гон будет использовать поток P&L, созданный торгов­лей 100 акциями. Если система торговли потребует использовать 2,39 контракта или единицы, то это будет выполнимо. Таким образом, имея возможность торго­вать дробной частью 1 единицы, вы можете эффективнее воспользоваться преиму­ществом оптимального f. Таким же образом надо поступать и трейдерам с рынка форекс, которые должны сначала решить, каким будет 1 контракт или единица. Для трейдера с рынка форекс 1 единицей может быть, например, один миллион долларов США или один миллион швейцарских франков.

Перейти на страницу:

РАЛЬФ РАЛЬФ ВИНС читать все книги автора по порядку

РАЛЬФ РАЛЬФ ВИНС - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров отзывы

Отзывы читателей о книге Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров, автор: РАЛЬФ РАЛЬФ ВИНС. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*