Алексей Шилейко - Информация или интуиция?
КРАШЕНЫЕ ШАРЫ
Вернемся к бильярду. Покрасим восемь шаров из шестнадцати в красный цвет, а остальные восемь — в синий. По-прежнему будем считать, что правая половина бильярда закрыта, а левая открыта. Посмотрим, внесла ли раскраска шаров что-то новое. Конечно, внесла. Если раньше мы говорили, что, например, состояние 1 — это состояние, когда один шар (неважно, какой) находится слева, а все остальные справа, то теперь мы уже должны говорить: состояние 1К (красный шар слева) или 1С. Аналогичным образом состояние 5 (пять шаров слева) подразделяется на шесть различных состояний: все пять шаров синие, один красный и четыре синих, два красных и три синих и т. д.Итак, раскраска шаров приводит к тому, что количество различных состояний существенно увеличивается, а статистический вес каждого состояния соответственно уменьшается. Раскраска шаров влечет за собой уменьшение статистического веса, а значит, и энтропии каждого состояния. Вряд ли кто-нибудь станет возражать, что раскраска шаров увеличивает количество информации, которую можно получить от бильярдного стола. Мы с вами можем еще не знать, что такое количество информации и в каких единицах ее надо мерить. Однако ясно, что сообщение: пять шаров находятся слева — несет с собой меньше информации, чем сообщение: слева находятся три красных шара и два синих. Аналогичным образом цветная телевизионная передача несет с собой больше информации, чем черно-белая. Например, если игроки одной команды одеты в синие майки и белые трусы, а игроки другой команды — в красные майки и белые трусы, то, наблюдая за игрой на экране цветного телевизора, мы никогда не перепутаем игроков различных команд, в то время как на экране черно-белого телевизора все игроки будут выглядеть одинаково.Главная трудность проводимых нами рассуждений состоит в том, что как в разговоре о шарах, так и в разговоре о телевизионных передачах предполагаются некие «мы», способные отличить красный шар от синего и игрока одной команды от игрока другой команды. Получается, что энтропия бильярдного стола зависит от присутствия наблюдателя. Чтобы внести некоторую ясность, рассмотрим снова физическую систему, состоящую из цилиндра с поршнем, причем поршень находится в одном из крайних положений, рабочий объем за поршнем заполнен газом под давлением больше атмосферного, а объем по другую сторону поршня заполнен тем же самым газом или воздухом, находящимся при атмосферном давлении. На вопрос о том, может ли такая система совершать механическую работу, любой старшеклассник ответит:— Да, конечно, может, потому что энтропия системы «объем с газом», у которой большинство молекул сосредоточено в одной, меньшей, части, а в другой, большей, части находится лишь незначительное количество молекул, много меньше максимальной.Такой ответ и верен и неверен. Неверен он потому, что если закрепить поршень и не дать ему возможность двигаться, то способность совершить механическую работу так и останется принципиальной и никогда не сможет быть реализована. Заметим, и это важно, что для того, чтобы закрепить поршень, например, вставив палку, уперев ее одним концом в поршень, а другим — в противоположную стенку цилиндра, не требуется затраты энергии. Иначе говоря, цилиндр с закрепленным поршнем ничем не отличается от такого же точно цилиндра с незакрепленным поршнем, кроме способности поршня двигаться.Будем считать теперь, что молекулы газа в рабочем объеме цилиндра делятся на синие, то есть такие, скорость которых имеет составляющую, направленную в сторону поршня, и красные, скорость которых имеет составляющую, направленную в сторону от поршня. В системе с закрепленным поршнем нет никакой возможности отличить синие молекулы от красных. И наоборот, в системе с движущимся поршнем поршень испытывает удары только синих молекул и как бы увлекает их за собой — тем самым отличает синие молекулы от красных.Значит, на поставленный ранее вопрос: может ли система, состоящая из цилиндра, поршня и газа, совершать механическую работу? — существует и такой ответ: да, может, потому что в системе имеется орган (поршень), способный отличить синие молекулы от красных. А коли так, мы вправе сделать два вывода. Первый вывод подтверждает уже сделанные нами высказывания о том, что способность некоторого запаса энергии совершать механическую работу (качество энергии) определяется его информативностью. Второй вывод наиболее важен для нас на данном этапе рассуждений: для того чтобы воспринимать информацию, совсем необязательно наличие человека-наблюдателя. Информация может восприниматься и поршнем.
ДЕМОНЫ МАКСВЕЛЛА
Положение резко меняется, когда мы получаем возможность наблюдать за молекулами. Значение энтропии остается постоянным в среднем, но оно может испытывать так называемые флюктуации, то есть изменяться на короткое время с обязательным последующим восстановлением. То, что мы наблюдали, как раз и было такой флюктуацией. Мы воспользовались этим и заставили систему совершать механическую работу. Как бы ни мала была эта работа, ситуация совершенно ясна. Вряд ли кто-нибудь возразит против того, что результат наблюдений за физической системой суть информация. А коли так, мы с неизбежностью приходим к выводу, что, располагая информацией об изолированной физической системе, находящейся в состоянии равновесия, мы все же можем заставить ее совершить механическую работу. Причем, и это очень важно, для совершения механической работы совсем необязательно присутствие наблюдателя. С тем же успехом можно покрыть всю поверхность сосуда измерителями давления (их называют датчиками) и построить автоматическую систему, вдавливающую внутрь некоторый участок поверхности в тот момент, когда укрепленные на ней датчики фиксируют отсутствие давления.Подобные датчики и связанные с ними автоматы — это члены сейчас уже достаточно обширного семейства так называемых демонов Максвелла. Английский ученый Дж. Максвелл, размышляя о втором начале термодинамики, предложил модель, содержащую фантастические существа — демоны. Эти демоны способны не только видеть каждую молекулу, но и определять ее скорость. Один из демонов открывает дверку, пропуская только быстрые молекулы, а другой — только медленные. Такое устройство с демонами позволяет отделить быстрые молекулы от медленных, а значит, снизить энтропию.Дж. Максвелл рассматривал свою модель как доказательство хотя бы принципиальной возможности нарушения второго начала термодинамики.В настоящее время доказано, что получать информацию о какой бы то ни было системе невозможно без воздействия на эту систему. Получить информацию о скорости молекулы демон может, лишь подействовав на молекулу и тем самым изменив ее скорость. Нарушения второго начала не происходит. Но то обстоятельство, что получение информации связано с затратами энергии, а располагая такой информацией, можно совершить механическую работу, то есть получить какое-то количество энергии, не может не привести нас к выводу, что информация суть физическая величина, которую, во всяком случае в термодинамических системах, можно измерять количеством затраченной или полученной энергии (механической работы).
ИНФОРМАЦИИ РАБОТАЕТ
Энергия, полученная при выполнении механической работы, в свою очередь, зависит от энтропии. Когда энтропия максимальна, система не содержит информации. Но стоит энтропии уменьшиться, например, в результате флюктуации, появляется информация, которая может быть использована для совершения .механической работы. Можно высказать следующее предположение. В любой изолированной физической системе сумма энтропии и информации есть величина постоянная, равная максимально возможному для этой системы значению энтропии. Количество информации в таком случае равно разности между максимально возможным и фактическим значениями энтропии. Наконец, приняв максимально возможное значение энтропии за начало отсчета, можно сказать, что количество информации равно энтропии, взятой с обратным знаком. Ученые придумали даже специальный термин «негэнтропия», то есть отрицательная энтропия.Чего же мы достигли на данном этапе рассуждений? Главное — мы показали, что информация суть физическая величина. Если измерять ее в единицах энтропии, то такие измерения для одинаковых количеств информации будут давать один и тот же результат независимо от условий, в которых измерения проводятся.Мы определили энтропию как логарифм статистического веса. Однако, во всяком случае в таких системах, как объем с газом, энтропия может быть определена непосредственно через значения других физических величин. В частности, для объема с газом приращение энтропии численно равно приращению количества тепла при данной температуре. Следовательно, энтропию, а значит, и информацию можно измерить, измеряя температуру и количество тепла.Мы высказали предположение о том, что качество энергии есть не что иное, как ее информативность. Сейчас это предположение можно считать доказанным для тепловой и механической энергии. Даже больше того, мы показали, что никакой специальной тепловой энергии не существует. То, что принято называть тепловой энергией, — это на самом деле энергия беспорядочного механического движения молекул. Беспорядочного — значит лишенного информации. Стоит, однако, внести в систему какое-то количество информации, движение упорядочивается и энергия системы приобретает новое качество.С этой точки зрения энергию паровой струи следует считать механической энергией. Таким образом, например, в паровой турбине преобразование тепловой энергии в механическую происходит без посредства поршня. За счет специальной конфигурации котла, трубопровода и сопла беспорядочное движение молекул в котле преобразуется в упорядоченное движение молекул в струе, вылетающей из сопла. Колесо же лишь преобразует поступательное движение паровой струи во вращательное движение вала. Сказанное отнюдь не противоречит сделанным в первой главе утверждениям относительно роли информации в процессе преобразования тепловой энергии в механическую. Мы просто показали здесь, что информация, которая вводится в систему выбором конфигурации трубопровода и сопла, существует и на более ранних этапах.Механическая энергия отличается от тепловой более высоким содержанием информации (информативностью).Однако у нас нет никаких оснований утверждать то же самое применительно к электрической, химической и другим видам энергии. Частично мы это сделаем в последующих главах.Мы доказали, что информация, которую можно получить, наблюдая за шарами на бильярдном столе или за молекулами в баллоне с газом, суть физическая величина, предложили способ и единицу измерения этой физической величины. Но из всего сказанного здесь отнюдь не следует, что эта информация — то же самое, что и информация, получаемая в процессе отгадывания чисел или при чтении художественной литературы.Это тоже предстоит доказать, и мы сделаем попытку привести такое доказательство в дальнейшем. Однако на этом пути нас подстерегает одна трудность, к рассмотрению которой мы и переходим в следующей главе.На всем протяжении этой главы речь шла об информации. Ну а как же интуиция? Ограничимся пока замечанием, что, если бы демоны Максвелла все-таки могли нарушать второе начало термодинамики, они явно делали бы это на основании интуиции.