Юрий Курносов - Аналитика: методология, технология и организация информационно-аналитической работы
— множество методов установления факта принадлежности синтаксически корректных высказываний к множеству синтаксически и семантически корректных высказываний.
Сетевые модели представления знаний формируются из следующих компонентов:
— множество информационных единиц;
— множество типов связей между информационными единицами (временные, причинно-следственные, родо-видовые и т. п.);
— множество связей между информационными единицами.
Такие модели получили название семантических сетей, среди которых, в зависимости от типов связей, принято выделять классифицирующие, функциональные сети, сценарии и семантические сети, не специализированные по типу отношений.
Продукционные модели представления знаний формируются из следующих компонентов:
— семантическая сеть;
— множество правил вывода (продукций).
Такие модели вместо логического вывода на множестве аксиом используют вывод на знаниях.
Фреймовые модели представления знаний формируются из компонентов типа «фрейм». Фрейм представляет собой структуру данных, включающую имя фрейма, имя слота (слотов), значение слота (слотов). На тип значения слота ограничений практически не налагается — ими могут быть числа, математические соотношения, тексты на естественном языке, программы, правила вывода или ссылки на другие слоты данного фрейма или других фреймов. Как следствие, из фреймов может быть построена сложная многосвязная структура, отражающая знания о некоторой предметной области.
В качестве технологической платформы для построения базы знаний могут быть избраны навигационные, реляционные и объектные базы данных, языки гипертекстовой разметки, программы, разработанные на языках логического программирования и обработки символьных данных и программы, разработанные на языках программирования общей семантики. Выбор технологической платформы может быть продиктован как спецификой хранимых знаний, так и наличествующим у разработчика инструментарием (не говоря о требованиях к быстродействию, уровню конфиденциальности знаний и т. д.).
9.3 Экспертные системы
Эксперты высокого класса не всегда есть под рукой, их опыт всегда специфичен, да и ротацию кадров следует учитывать. Технология же экспертных систем позволяет улучшить (если не исправить) ситуацию в кадровой сфере, а также оптимизировать работу экспертов высокого класса, переложив решение рутинных проблем на «плечи» автоматизированных систем. Поэтому экспертные системы нашли широкое применение в современной аналитике. Заметим, что экспертные системы являются инструментом, способным оперировать, в том числе, и знаниями, еще не прошедшими процедуру научного обобщения и формализации — кроме экспертных систем это может делать только человек. К этому следует прибавить, еще и то, что способности человека по оперативному извлечению необходимых знаний и данных из памяти ограничены и подвержены влиянию целого ряда внешних условий (например, стрессовые ситуации, колебания физических параметров среды обитания и т. п.).
В качестве иллюстрации к последнему утверждению приведем курьезный пример. В 1990-е годы в Италии провели интересный эксперимент: специально отобранной группе девушек были предложены для решения два идентичных задания, первое из которых они решали, будучи одеты в одежду делового стиля, а второе — в бикини. Второе задание было решено с чуть ли не в два раза худшими результатами, чем первое. А ведь это всего лишь изменение стиля одежды… Чего же ожидать от человека, если поместить его в действительно экстремальные условия?
В последние десятилетия направление экспертных систем (ЭС) оформилось в самостоятельную (и весьма прибыльную) отрасль теоретических и прикладных исследований в рамках теории искусственного интеллекта. Правда, в силу действия модных течений название специалистов, работающих в этой области, несколько раз менялось: то их именовали специалистами по интеллектуальным технологиям, то инженерами знаний, то когнитологами. Сейчас на западе в ходу термин Knowledge Management (управление знаниями), соответственно, поменялось и название специальности.
Целью деятельности этих специалистов является создание программ и устройств, использующих знания и процедуры вывода для решения задач в заданной предметной области. ЭС не только реализуют заранее разработанные алгоритмы решения задач, но способны самостоятельно вырабатывать «новые» алгоритмы решения возникающих задач.
Следует выделять два направления работ в этой отрасли: направление создания инструментальных средств для создания экспертных систем (программных оболочек экспертных систем) и направление собственно создания ЭС, наполненных конкретными знаниями в некоторой предметной области.
В настоящее время ЭС применяются в различных областях человеческой деятельности. К числу уже устоявшихся, апробированных в научно-исследовательской и деловой практике, можно отнести экспертные системы медицинского, технологического, юридического назначения, экспертные системы, ориентированные на поддержку процессов проектирования в архитектуре, электронике и электротехнике, разработки программного обеспечения, а также в военных приложениях. Их характерной особенностью является то, что они разработаны для тех отраслей человеческой деятельности, в которых проявляются устойчивые закономерности, описания которых и подвергается формальному представлению в базе знаний. Перечислим ряд экспертных систем, принадлежащих к различным отраслям деятельности человека:
— MYCIN- в области медицины;
— Rational Rose — в области разработки программного обеспечения;
— ArchiCAD — в области архитектурного проектирования;
— P-CAD, Or-CAD — в электронике и электротехнике и многие другие.
В зависимости от типов решаемых задач, экспертные системы можно разделить на следующие классы: системы классификации и распознавания объектов, интерпретации данных, диагностики, проектирования, прогнозирования, планирования, мониторинга, отладки, обучения и управления.
Для взаимодействия с пользователем могут использоваться интерфейсы, обеспечивающие взаимодействие с пользователем на подмножестве естественного языка, графические средства, шаблоны ввода/вывода и формальные знаковые системы. При этом интерфейсом могут предусматриваться режимы консультации потребителя, комментария к выводам (объяснение), обучение пользователя правилам из базы знаний и коррекции содержимого базы знаний.
Как явствует из предыдущего предложения, экспертные системы в качестве своего ядра имеют именно базы знаний, построенные в соответствии с одной из описанных нами моделей представления знаний или по комбинированной схеме.
9.4 Системы искусственного интеллекта и интеллектуального анализа данных
Мы уже указывали на существование «родства» между экспертными системами и теорией искусственного интеллекта. Эта отрасль современной науки, в свою очередь «отпочковалась» от кибернетики и постоянно подпитывается ее идеями, впрочем, теория систем искусственного интеллекта (ИИ) многими своими достижениями обогатила кибернетику. Но кибернетика рассматривает процессы управления и в искусственных, и в естественных системах, в то время, как теория ИИ «вынужденно» исследует естественные системы, поскольку ставит перед собой цель создания «мыслящей» искусственной системы.
При проектировании систем искусственного интеллекта их создатели исходят из соображений, что «способ мышления» системы искусственного интеллекта не обязательно должен копировать способ мышления человека и строение его «мыслительного инструмента». Однако, как бы ни далеки по своему устройству были системы искусственного интеллекта от систем естественных, они вынужденно копируют и используют те закономерности мыслительной деятельности, которые были открыты человеком.
Основное отличие экспертных систем от систем искусственного интеллекта заключается в том, что экспертные системы используют (а иногда и логически достраивают) совокупность знаний, полученных от экспертов, но сами не способны создать нового знания. Новое знание может появиться только при условии, что система располагает комплектом средств сбора информации, может управлять им, способна к самообучению, самоорганизации, а также различает «полезное» и «вредное» для нее или ее пользователя, а экспертные системы в классическом варианте такими способностями не наделяются.
Системы же искусственного интеллекта, как правило, обладают всеми этими способностями или их частью. Благодаря этому, системы ИИ способны выявлять отклонения от текущего эталона, накапливать «черновые» гипотезы и через цепь обратной связи устанавливает их статус и полезность. Цепь обратной связи может быть реализована в виде некоторого вспомогательного инструментального комплекса, реализованного на иных чувствительных элементах, нежели основной комплекс сбора информации, либо представлен учителем, «объясняющим» системе, «… что такое «хорошо» и что такое «плохо». В качестве такого учителя часто выступает человек, снабжающий интерпретантой тот признак96, который был выявлен системой ИИ.