С. Капица - Синергетика и прогнозы будущего
И, наконец, третья голова. В сущности, она самая главная. Она отвечает не на те вопросы, на которые отвечать приятно и полезно, а на те, на которые нужно. Именно поэтому нелинейная наука интенсивно развивается, например, в Институте прикладной математики им. М.В. Келдыша Академии наук. Этот институт известен крупным вкладом в реализацию космической и ядерной программ, в становление вычислительной математики и программирования, в другие проекты национального масштаба. Дело в том, что на множество вопросов, связанных с прогнозом, нам было бы очень желательно знать ответы. И как можно быстрее. Некоторые работы, выполненные в Институте, и обсуждаются в этой книге.
Вы заметили, что детективы и традиционные фантастические романы на книжных полках потеснили книги в жанре "фэнтези"? В них создаются иные миры, построенные по иным законам, и далее "проигрывается" жизнь в этих мирах. Вероятно, это симптом неблагополучия.
Как это ни банально звучит, так, как мы живем, жить нельзя. Немножко можно, а долго нельзя. Как бы Вы отнеслись к человеку, который получает 100 тыс. в месяц, а тратит миллион? Но именно так живет человечество, которое лишь на одну десятую использует возобновляемые источники энергии. А невозобновляемые источники, как это ни странно, не возобновляются.
За последние 20 лет конфликты и региональные войны заставили покинуть родные места 13 млн. человек, число "экологических беженцев" за тот же срок превысило 10 млн. При американской бомбардировке Нагасаки число убитых и раненых составило около 140 тыс. человек. В результате аварии на химическом заводе в Бхопале это число превысило 220 тыс. Человечество играет в очень опасную игру. Оно ведет свой корабль со спокойствием и уверенностью невежды.
Каковы сценарии развития человечества, отдельных стран и регионов? Что будет, если в стране не будет высшего образования? Где поворотные пункты (точки бифуркации) в истории, в геополитике, в смертельно опасной гонке вооружений и разорительной для отдельных стран "гонке разоружений"? На эти вопросы и призвана отвечать третья голова.
Модели, созданные на основе нелинейной науки, предложенные американским ученым Дж.Майер-Крессом и его коллегами, стали в свое время важным аргументом в пользу отказа от первоначальных планов СОИ. Выяснилось, что развертывание такой системы не повысит, а существенно понизит безопасность США. В этой модели есть чувствительность к начальным данным. Малые причины могут иметь большие и трагические последствия.
Другая, недавно предложенная концепция – теория самоорганизованной критичности,- устанавливает глубокую аналогию между сходом снежных лавин, колебаниями курсов акций, землетрясениями, техногенными катастрофами и проблемами, возникающими при хранении ядерных арсеналов. Третьей голове есть что сказать об "окнах уязвимости" нашей цивилизации и возможных альтернативах.
Впрочем, третьей голове приходится хуже других. Чтобы погубить дело, надо сделать его "престижным". Вспомните 70-е годы. Энтузиасты создавали новую науку – экологию. Спорили, мечтали. А сейчас ... Выдающимися знатоками экологии вдруг оказались незадачливые генсеки и отставные премьеры. Специалистов как-то незаметно оттеснили. Сейчас то же самое происходит с "безопасностью", "устойчивым развитием", "планированием будущего". Это "идет". Под это "дают". Но будущее слишком серьезная вещь, чтобы отдавать его в руки временщиков от политики и науки.
Примерно такие слова авторам приходится говорить студентам физтеха, польстившимся на слова "хаос" и "нелинейная наука". И почти все твердо решают иметь дело со второй головой. Это – отражение отношения к науке в обществе. В обществе, где сегодня не любят смотреть ни на звезды, ни под ноги. Но времена меняются.
2. Структуры, самоорганизация, нелинейная динамика Время простых вопросов
Самая большая беда для науки – превратиться в моду.
С.ЦвейгМолодость научного направления связана с чувством удивления и с парадоксами. Задается простой вопрос. На него дается очевидный ответ, который оказывается неверным. Это и ведет к размышлениям. Поэтому попробуем вначале удивиться.
Представьте себе, что мы находимся на побережье небольшого острова в океане, длина побережья которого ... бесконечна. Такого не бывает, скажет здравомыслящий читатель. И окажется не прав. Рис.5 показывает, как можно построить такую фигуру.
Рис. 5. Несколько первых шагов в последовательности, приводящей к построению острова Коха, который имеет ограниченную площадь и бесконечный периметр.
На первом шаге берем обычный равносторонний треугольник (см. рис.5). Потом на каждой стороне достраиваем по треугольнику, сторона которого в три, а значит, площадь в девять раз меньше, чем у исходного. И так далее. То, что получится после бесконечного количества таких шагов, называется островом Коха. Почему его побережье бесконечно? Это очень просто. На втором шаге периметр фигуры увеличится в 4/3 раза. На третьем – еще в 4/3. Это произошло потому, что каждый отрезок мы заменили ломаной, длина которой в 4/3 раза больше. А (4/3)n при n, стремящемся к бесконечности, конечно, тоже стремится к бесконечности. Если вспомнить знакомую из школьных времен геометрическую прогрессию, то можно убедиться, что площадь острова Коха конечна.
Теперь представим себе, что мы решили измерить периметр острова Коха, пользуясь линейкой определенной длины. При этом мы, конечно, будем заменять сложную изрезанную береговую линию ломаной со звеньями, не меньшими, чем наша линейка, как это всегда делают географы. Измеренный периметр будет зависеть от длины линейки. Это кажется совершенно неожиданным. Но действительно, чем меньше длина линейки, тем больше измеренная длина побережья. Простейшая процедура измерения длины оказывается совсем не так проста, как кажется вначале.
Остров Коха обладает еще одной забавной особенностью. Допустим, что мы фотографируем этот остров в океане из космоса. Мы можем фотографировать с любым увеличением, но часть побережья будет тем меньше, чем больше увеличение. И мелкие детали в крупном масштабе, естественно, будут теряться. Типичная картина, которую мы увидим, показана на рис.6. В крупном масштабе видим большой зубец и несколько маленьких. Увеличим маленький зубчик. То есть, по существу, увеличим маленький прямоугольничек до размеров первоначального. Опять выделим маленький прямоугольник, опять увеличим и опять увидим то же самое ... И так до бесконечности. Это свойство выглядеть в любом, сколь угодно мелком масштабе примерно одинаково сейчас называется масштабной инвариантностью, а множества, которые им обладают, – фракталями. Можно спросить, как же характеризовать фракталы, если, как в сказке про Алису, размеры становятся какими-то зыбкими, ненадежными и начинают зависеть от размеров линейки?
Рис. 6. Фракталы обладают масштабной инвариантностью – при увеличении мы вновь и вновь видим одну и ту же картину. Побережье острова Коха в разных масштабах, на каждом следующем рисунке левый прямоугольник показан в увеличенном виде.
На это математики могут ответить просто и остроумно:"Важна не сама длина, а то, как она зависит от размеров линейки, т.е. важно некое число, называемое фрактальной размерностью". Для отрезка – 1, для квадрата – 2, для куба – 3. Для фракталов – дробное число. Отсюда и само название "фрактали", происходящее от английского "fractal" – дробный, неполный, частичный. Например, для острова Коха оно лежит между 1 и 2. Такое значение как будто говорит, что это уже не обычная кривая, но еще не плоскость.
Мы надеемся, после чтения всего написанного наш читатель не утратил способности здраво рассуждать. А для того, чтобы эту способность обострить, пусть он представит, что авторы этих строк просят скромную, а может быть, и не очень скромную сумму, например, на исследования фрактальной геометрии. Наверное, сначала возникнет настроение, точно выраженное словами одного грибоедовского героя:"Ну нет, ученостью меня не обморочишь", а потом и первое конкретное возражение:"Если все так просто, как здесь написано, то неужели об этом раньше не знали?".
Конечно, знали. Первый пример фрактала придумал классик математического анализа Вейерштрассе еще в прошлом веке. Так же, как к береговой линии острова Коха, к этой линии нельзя провести касательную ни в одной точке. Такие функции не имеют производной. Они вызывали у современников резкое чувство протеста. Блестящий математик Эрмит писал своему коллеге Стильтьесу:"... С омерзением и ужасом отворачиваюсь от этой зловредной язвы – непрерывных функций, нигде не имеющих производных".
И тут, наверное, рождается второе возражение:"Все это очень занятно. Но, конечно, фракталы не имеют никакого отношения к математическому моделированию реальных объектов и тем более к природе. Да и вообще математика не является естественной наукой. И ее роль не следует переоценивать". Это сильное возражение. Оно лежит в русле классической научной традиции. Следуя традиционным канонам, ценность такого математического "монстра" в познании реальности очень невелика. И хотя уже в начале нашего века французский физик Ж.Перрен высказал мысль о том, что фракталы будут полезны во многих физических задачах, в частности, связанных с броуновским движением, к фракталам относились как к забавной математической безделице.