Kniga-Online.club

Рэймонд Смаллиан - Как же называется эта книга?

Читать бесплатно Рэймонд Смаллиан - Как же называется эта книга?. Жанр: Прочая научная литература издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

51. Если первое высказывание истинно, то первого братца зовут Траляля. Тогда второго братца зовут Труляля, и второе высказывание также истинно. Если первое высказывание ложно, то первого братца зовут Труляля, второго — Траляля, и, следовательно, второе высказывание также ложно. Таким образом, либо оба высказывания истинны, либо оба высказывания ложны. С другой стороны, оба высказывания не могут быть ложными, так как Траляля и Труляля никогда не лгут в один и тот же день. Следовательно, оба высказывания должны быть истинными. Значит, первого братца зовут Траляля, а второго — Труляля. Алиса встретила их в воскресенье.

52. Несмотря на большое внешнее сходство, эта задача весьма отличается от предыдущей. Второе высказывание заведомо истинно. Так как встреча происходила на другой день после встречи, описанной в предыдущей задаче, то она пришлась на будний день. Следовательно, оба высказывания не могут быть истинными, из чего мы заключаем, что второе высказывание должно быть ложным. Таким образом, первого братца зовут Труляля, а второго — Траляля.

53. Первый ответ заведомо был ложным. Следовательно, встреча Алисы с двумя братцами происходила в будний день. Но тогда другой братец должен был дать правдивый ответ и поэтому сказал: «Нет».

54. Высказывание (2) первого братца заведомо ложно, поэтому его высказывание (1) также ложно (поскольку было сделано в один день). Следовательно, первый братец не лжет по субботам. Отсюда мы заключаем, что второй братец по субботам лжет. В день встречи второй братец говорит правду (так как первый братец лжет), поэтому встреча могла произойти в понедельник, вторник или среду. Единственный из этих дней, когда он может, не погрешив против истины, заявить, что будет лгать завтра, — это среда. Следовательно, дело было в среду.

55. Высказывание братца заведомо ложно (если бы оно было истинно, то братец лгал бы в день встречи, и мы пришли бы к противоречию). Следовательно, по крайней мере одно из двух высказываний «Я лгу сегодня», «Меня зовут Труляля» должно быть ложным. Первое высказывание («Я лгу сегодня») истинно, поэтому ложным должно быть второе высказывание. Итак, Алисе встретился Траляля.

56. Можно. Если бы встретившийся Алисе братец в тот день лгал, то первое высказывание в дизъюнкции было бы истинным, вследствие чего и все сложное высказывание также было бы истинным, и мы пришли бы к противоречию. Следовательно, в день встречи с Алисой братец говорил правду, и его высказывание истинно: либо он лжет, либо его зовут Труляля. Так как в день встречи братец не лгал, то его звали Труляля.

57. Оба высказывания истинны, поэтому встреча произошла в воскресенье. Определить, кто из братцев Траляля и кто Труляля, невозможно.

58. Оба братца не могут лгать в воскресенье и утверждать: «Сегодня не воскресенье», поэтому знаменательный день не может приходиться на воскресенье. Следовательно, первый братец говорит правду, а второй (поскольку сегодня не воскресенье) лжет. Так как второй утверждает, что сегодня понедельник, то знаменательный день не может приходиться и на понедельник.

Второй братец, утверждая, что Лев лгал вчера, солгал. Следовательно, вчера Лев говорил правду. Это означает, что вчера могли быть такие дни недели, как четверг, пятница, суббота или воскресенье, а сегодня — пятница, суббота, воскресенье или понедельник. Воскресенье и понедельник мы уже исключили, поэтому остается пятница или суббота.

Заметим, что завтра наступит один из дней, когда Труляля лжет (так сказал первый братец, говоривший правду). Следовательно, сегодня не может быть суббота. Отсюда мы заключаем, что сегодня пятница.

Отсюда в свою очередь следует, что Труляля лжет по субботам, то есть ведет себя как Единорог. Кроме того, первый брат сегодня, то есть в пятницу, говорит правду, а это означает, что его зовут Траляля. Тем самым задача полностью решена.

59. Предположим, что первый братец сказал правду. Тогда погремушка принадлежит Труляля. Второй братец должен в этом случае лгать (так как встреча Алисы с братцами произошла не в воскресенье), поэтому его настоящее имя не Труляля. Значит, его зовут Траляля, ему Алиса должна вручить погремушку.

Предположим теперь, что первый братец лгал. Тогда погремушка принадлежит Траляля. Значит, второй братец сказал правду, поэтому его зовут Труляля. Таким образом, и в этом случае погремушка принадлежит первому братцу. Следовательно, в любом случае Алиса должна отдать погремушку первому братцу.

60. Шансы равны нулю. Предположим, что высказывание встретившегося Алисе братца истинно. Тогда владелец погремушки в день встречи должен был лгать и, следовательно, не мог быть тем братцем, которого встретила Алиса. С другой стороны, предположим, что высказывание встретившегося Алисе братца ложно. Тогда владелец погремушки в день встречи должен лгать. Следовательно, и в этом случае он не может быть владельцем погремушки.

61. Шалтай-Болтай правильно оценил шансы. Предположим, что братец лгал. Это означало бы, что в день встречи владелец погремушки не говорит правду. В день встречи он лжет и, следовательно, должен быть тем самым братцем, с которым встретилась Алиса. Предположим теперь, что встретившийся Алисе братец говорит правду. Это означало бы, что владелец погремушки в день встречи действительно говорит правду. Если встреча происходит в будний день, то погремушка принадлежит встретившемуся Алисе братцу, а если в воскресенье, то (поскольку по воскресеньям оба братца говорят правду) владельцем погремушки может быть любой из них.

Итак, подведем итоги. Если встреча происходит в будний день, то погремушка принадлежит тому, с кем разговаривала Алиса. Если встреча происходит в воскресенье, то шансы за то, что он владелец погремушки, составляют 6,5 из 7, или 13 из 14.

62. Ключом к решению служит то место в условиях задачи, из которого видно, что, получив ответ второго братца, Алиса знала, кому ей нужно отдать погремушку. Если бы второй братец ответил «да», то один из братьев говорил бы правду, а другой лгал бы, и Алиса не могла бы определить, кто из них владелец погремушки. Но поскольку в условиях задачи сказано, что Алиса отдала погремушку, то второй братец не ответил «да». Следовательно, братцы либо оба лгали, либо оба говорили правду. Отсюда мы заключаем, что они оба говорили правду, и встреча с Алисой произошла в воскресенье. Поэтому Алиса отдала погремушку первому братцу.

63. Да, Трулюлю должен существовать. Именно с ним и разговаривала Алиса.

Действительно, встретившийся ей братец утверждал, что оба следующих высказывания истинны:

(1) Я либо Труляля, либо Траляля.

(2) Сегодня я лгу.

Если бы его утверждение было верно, то высказывания (1) и (2) были бы истинными. Но тогда было бы истинным высказывание (2), и мы пришли бы к противоречию. Следовательно, встретившийся Алисе братец солгал, поэтому оба высказывания (1) и (2) не могут быть истинными (по крайней мере одно из них ложно). Высказывание (2) истинно (так как утверждение о высказываниях (1) и (2) ложно). Следовательно, высказывание (1) должно быть не истинным. Таким образом, встретившийся Алисе человечек не Труляля и не Траляля. Значит, его должны звать Трулюлю.

64. Первый братец не мог быть в действительности Трулюлю, так как Трулюлю всегда лжет. Поэтому его зовут Труляля или Траляля, и он лжет. Тогда второй братец также лжет. Если бы второго братца звали Труляля или Траляля, то Труляля и Траляля лгали бы в один и тот же день, что невозможно. Следовательно, второй братец должен быть Трулюлю.

65. Эта версия просто-напросто ложна!

66. Кем бы ни был второй братец, его высказывание заведомо истинно. (Кажется, Декарт заметил: «Всякий, кто утверждает, что он существует, изрекает истинное высказывание». Мне действительно не приходилось встречать никого, кто бы не существовал.) Поскольку второе высказывание истинно и в день встречи было не воскресенье, то первое высказывание должно быть ложным. Отсюда мы заключаем, что если эта версия верна, то Трулюлю не существует.

Решение к эпилогу. Третья версия истории заведомо ложна. Следовательно, ни одна из версий не была рассказана в субботу или в воскресенье. Это означает, что четыре дня подряд версии можно рассказывать лишь при условии, если третья версия приходилась на среду. Тогда последняя версия была рассказана в четверг и поэтому должна быть верной. Таким образом, Трулюлю в действительности не существует! (Замечу, кстати, что лично я ничуть не сомневаюсь в существовании Трулюлю. Льюису Кэрроллу следовало бы знать об этом.)

Что же касается Алисы, то (поскольку четвертая версия — единственная, имевшая под собой реальную основу) ей нетрудно было понять всю беспочвенность опасений, вызванных «призраком Трулюлю».

Перейти на страницу:

Рэймонд Смаллиан читать все книги автора по порядку

Рэймонд Смаллиан - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Как же называется эта книга? отзывы

Отзывы читателей о книге Как же называется эта книга?, автор: Рэймонд Смаллиан. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*