Рудольф Рэфф - Эмбрионы, гены и эволюция
Использование разнообразия мРНК для оценки числа генов таит в себе и другой источник недоразумений. Чисто генетические методы дают возможность выделять мутации, затрагивающие определенные процессы или периоды развития. Эти мутации выявляют гены, специфически влияющие на онтогенез, а не те гены, которые необходимы для метаболизма или поддержания структуры клеток на всех стадиях развития. Матричные РНК зародышей содержат как последовательности, необходимые для определенных стадий развития, так и последовательности, обеспечивающие жизненно важные функции, и обе эти группы последовательностей вносят свой вклад в создание общего разнообразия популяции мРНК. Разграничить эти две группы последовательностей можно лишь при помощи экспериментов, в которых мРНК зародышевых стадий сравнивают с мРНК взрослых тканей, с тем чтобы определить долю последовательностей, содержащихся в зародышах и являющихся общими для всех стадий. Эти последовательности можно отнести к числу обеспечивающих жизненно важные функции.
Измерения разнообразия мРНК производят, используя методы гибридизации нуклеиновых кислот, сходные с описанными в гл. 3. Однако, вместо того чтобы ренатурировать комплементарные цепи ДНК, кодирующую цепь геномной ДНК гибридизуют с РНК. Поэтому подсчет числа экспрессируемых на данной стадии генов можно производить, определяя долю ДНК, гибридизующейся с мРНК, взятой на любой стадии развития.
Такие оценки можно производить для ряда организмов с разной степенью полноты и успеха. Значения разнообразия мРНК, а тем самым числа активных генов, ответственных за продукцию белков в яйцах и зародышах некоторых первично- и вторичноротых, представлены в табл. 10-3. Оценки разнообразия мРНК, приведенные в этой таблице, получены либо для всей цитоплазматической РНК, либо (предпочтительнее) для РНК, связанной с полисомами, а поэтому, как принято считать, действительно определяющей синтез белка. Полисомная РНК с большей вероятностью содержит лишь «настоящие» мРНК, чем вся цитоплазматическая РНК, однако даже к результатам, полученным на полисомной РНК, следует относиться с осторожностью. Большая часть последовательностей РНК, выявляемых методом гибридизации, слишком редки (представлены небольшим числом молекул), чтобы их можно было идентифицировать по их презумптивным белковым продуктам; их принадлежность к мРНК нельзя считать строго установленной.
Оценки числа активных генов, содержащихся в яйцах и личинках дрозофилы, основанные на данных по гибридизации нуклеиновых кислот, оказываются в общем выше, чем оценки числа генов, специфически необходимых для личиночного развития, произведенные генетическими методами. Это неудивительно, так как следует ожидать, что экспрессируются не только гены, специфичные для развития, но и гены, обеспечивающие жизненно важные потребности организма. В среднем опубликованные оценки разнообразия мРНК близки к генетическим оценкам общего числа генов у дрозофилы. Однако недавно Циммерман и др. (Zimmerman et al), используя методы, позволяющие выявить все классы мРНК, обнаружили в личинках дрозофилы примерно 14500 последовательностей мРНК. Это более чем вдвое выше числа, предсказанного Джаддом и его сотрудниками на основании проведенного ими генетического анализа. Для того чтобы вскрыть причины такого расхождения, необходимы более точные данные о специфичной индивидуальности предполагаемых генов, подсчитываемых этими двумя весьма различными методами.
Таблица 10-3. Разнообразие цитоплазматических РНК, содержащихся в яйцах и зародышах1)
Организм Стадия 2) Оценка числа различных экспрессируемых генов Источник данных Первичноротые Drosophila melanogaster (плодовая мушка) Яйцо 8000 Hough-Evans et al., 1980 Личинки 3) 3100 Bishop et al, 1975 '' 5400 Levy, McCarthy, 1975 Личинки 4) 14500 Zimmerman et al., 1980 Musca domestica (комнатная муха) Яйцо 16000 Hough-Evans et al., 1980 Urechis caupo (эхиуриды) '' 21000-31000 Davidson, 1976 Вторичноротые Xenopus laevis (шпорцевая лягушка) '' 18000-27000 '' '' Головастик 4) 20000 Permian et al., 1977 Arbacia punctulata (морской еж) Яйцо 20000 Davidson, 1976 Strongylocentrotus purpuratus (морской еж) '' 24000 '' '' 16 клеток 4) 18000 Hough-Evans et al., 1977 Бластула 4) 15000 '' '' Гаструла 4) 11000 Galau et al., 1976 Плутеус 4) (личиночная стадия) 10000 '' ''1) Оценка числа генов производилась по числу обнаруженных видов РНК, исходя из допущения, что в среднем РНК содержит 1500 нуклеотидов. Выражение, используемое для такой оценки (принимая, что транскрибируется только одна цепь ДНК), следующее: размер уникальной части генома, выраженный числом нуклеотидных пар, умноженный на фракцию, представленную в виде РНК, умноженный на два, равен сложности РНК в нуклеотидах. Сложность РНК в нуклеотидах, деленная на среднее число нуклеотидов на мРНК, равна числу видов мРНК.
2) Оценки разнообразия РНК в яйцах относятся ко всей РНК, предположительно к мРНК, потому что белковый синтез в яйцах слишком незначителен, чтобы можно было отделить фракцию функционирующих мРНК от других цитоплазматических РНК.
3) Общая цитоплазматическая РНК.
4) мРНК, выделенная из полисом, участвующих в белковом синтезе.
У других организмов, приведенных в табл. 10-3, разнообразие генов, экспрессирующихся в процессе развития в виде мРНК, выше, чем у дрозофилы. Подлинный смысл этого неясен, однако вполне возможно, что различия в разнообразии представляют собой один из аспектов парадокса значений С (несоответствие между морфологической сложностью и количеством ДНК в геномах организмов).
Самые подробные исследования разнообразия мРНК, регулируемого в процессе развития, принадлежат Дэвидсону (Е. Davidson) и его сотрудникам, работавшим на морских ежах Strongylocentrotus purpuratus. Они (см. Galau et al., 1976) сравнивали разнообразие мРНК в тканях развивающихся и взрослых особей. Кроме того, эти исследователи поставили перед собой и другую задачу, возможно, более существенную, чем просто установление числа генов; они пытались оценить число генов, специфичных для определенной стадии развития, и число генов, экспрессирующихся на нескольких разных стадиях и в клетках взрослого организма. Полученные ими данные, приведенные в табл. 10-3, вскрывают любопытный факт. Число генов, экспрессирующихся как белки, в процессе развития морского ежа явно уменьшается, несмотря на резкое возрастание морфологической сложности и дифференцированности в период между началом дробления и стадией плутеуса. Так, мРНК яйца содержат последовательности, имеющиеся также и в мРНК гаструлы, но половина последовательностей, имевшихся в яйце, в гаструле отсутствует. Бластула и плутеус содержат большую часть последовательностей, имеющихся в гаструле, но, кроме того, у них есть и другие последовательности. Были изучены также три ткани взрослого морского ежа, что было просто подвигом, так как взрослый морской еж - это, в сущности, известковая коробка, наполненная гонадами и не содержащая почти ничего другого. Разнообразие мРНК в тканях взрослых особей невелико: в любой ткани число генов, экспрессирующихся в виде мРНК, составляет примерно 2-4 тысячи. Хотя разнообразие мРНК в этих тканях гораздо ниже, чем в гаструле, тем не менее около 1,5-2 тысяч имеющихся у них последовательностей те же, что и у гаструлы. Интересно, что во всех трех тканях этот набор общих с гаструлой последовательностей одинаков.