Рудольф Рэфф - Эмбрионы, гены и эволюция
В отличие от этого у плацентарных млекопитающих яйца мелкие и содержат мало желтка или других веществ, необходимых для длительного самостоятельного синтеза белка, потому что их зародыши развиваются как бы в контейнере с питательной средой, помещенном в тело матери. Яйца млекопитающих вначале развиваются очень медленно. У зародыша мыши первые 4-5 делений дробления занимают трое суток. На четвертые сутки образуется бластоциста, состоящая примерно из 100 клеток. Имплантация происходит спустя 4,5 сут. Поскольку наличные запасы мРНК невелики, ее транскрипция в ядрах зародыша начинается у мышей очень рано - еще до первого деления дробления и имеет жизненно важное значение для осуществления ранних стадий развития.
Развитие зародышей млекопитающих, предшествующее их имплантации, приводит к образованию бластоцисты (рис. 4-17) - полой структуры, напоминающей бластулу и состоящей из клеток двух типов: клеток трофобласта, покрывающих зародыш снаружи, и внутренней клеточной массы, располагающейся в полости, ограниченной трофобластом. Из трофобласта развивается плацента, а из внутренней клеточной массы - внезародышевые оболочки и сам зародыш. Развитие зародыша до стадии бластоцисты не зависит от морфогенетической информации, получаемой в результате взаимодействия с тканями материнского организма, потому что этой стадии достигают зародыши, выращиваемые на простой питательной среде, содержащей только пируват и соли. Для раннего периода постимплантационного развития необходимы другие более сложные среды, однако результаты соответствующих экспериментов позволяют сделать вывод, что раннее постимплантационное развитие регулируется изнутри, а матка обеспечивает питание и опору; хороший обзор на эту тему составил Грэхэм (Graham, 1973).
Рис. 4-17. Химерные мыши, полученные в результате сращивания зародышей двух разных генотипов на стадии дробления (Mintz, 1967).
Для того чтобы выяснить, до какой степени клетки млекопитающих способны к мозаичному развитию, были проведены эксперименты с удалением клеток и со сращиванием зародышей. Мур (N. Moore) и его сотрудники разрушали у 2-, 4- и 8-клеточных зародышей кролика все бластомеры, за исключением одного, и переносили этот последний в матку приемной матери. Из 30% таких бластомеров, взятых от 2-клеточных зародышей, 19%-от 4-клеточных, 11%-от 8-клеточных были получены нормальные крольчата. Тарковски и Вроблевска (Tarkowski, Wroblewska) разделяли бластомеры 4- и 8-клеточных зародышей мышей и выращивали их в культуре. Им удалось проследить за судьбой каждого бластомера лишь для небольшого числа диссоциированных зародышей, но некоторые полученные при этом данные оказались очень интересными. Из бластомеров одного 4-клеточного зародыша были получены три бластоцисты и один трофобластический пузырек (бластоциста, не содержащая внутренней клеточной массы). Из 8-клеточного зародыша, разделенного на пары бластомеров, были получены три бластоцисты и одна морула. Ни в одном случае не наблюдалось мозаичной дифференцировки, характерной для асцидий. Кроме того, эти результаты резко отличались от тех, которые получил Руд (Ruud) в аналогичных экспериментах с зародышами амфибий. Руд разделял бластомеры 4-клеточного зародыша и выращивал их в культуре по отдельности. Из двух бластомеров, содержавших кусочки зоны серого серпа, формировались маленькие, но полные зародыши, а два других бластомера делились, но дифференцировки не происходило.
Тарковски и Вроблевска высказали предположение, что в зародышах млекопитающих предетерминированные локализованные участки цитоплазмы не играют никакой роли. Направление дифференцировки бластомера определяется только его местоположением в ранней бластоцисте. Так, клетка, оказавшаяся снаружи, становится частью трофобласта, а клетка, попавшая внутрь, развивается во внутреннюю клеточную массу. Хильмен (Hillman) и ее сотрудники проверили это предположение, перенося меченые бластомеры во внутренние или наружные участки немеченых зародышей. Как и предсказывали Тарковски и Вроблевска, бластомеры дифференцировались в трофобласт или внутреннюю клеточную массу в соответствии со своим положением.
Зависимость судьбы клетки от ее положения и отсутствие организатора были продемонстрированы также и другим способом. Тарковски и Минц (Mintz) диссоциировали мышиные зародыши на стадии морулы и объединяли клетки двух зародышей, различающихся по генам окраски шерсти. Образовавшиеся в результате гибридные бластоцисты были имплантированы в приемную мать. Из них развились нормальные живые мышата; это были химеры, в окраске которых проявилось действие обоих генов. Схема такого эксперимента представлена на рис. 4-17.
Степень зависимости судьбы клеток млекопитающих от их местоположения в зародыше и взаимодействия с другими клетками особенно ярко продемонстрировали Минц и Илмензе (Ilmense). Эти авторы экспериментально вызывали образование тератокарцином у мышей, имплантируя в полость тела (не в матку) нормальный ранний зародыш. Развитие такого зародыша протекало беспорядочно, и он превращался в солидную опухоль, содержащую популяцию быстро делящихся стволовых клеток (эм6риокарциномных клеток), способных дифференцироваться с образованием самых разнообразных тканей. Эти солидные опухоли часто удается диссоциировать и выращивать в перитонеальной полости, получая асцитные опухоли. Асцитные опухоли состоят из эмбриональных телец, в центре которых находятся эмбриокарциномные клетки, окруженные слоем недифференцированных энтодермальных клеток. Минц и Илмензе вводили эмбриокарциномные клетки из линии асцитных опухолевых клеток, сохранявших эуплоидный набор хромосом, в бластоцисты генетически помеченной линии мышей и получали здоровых потомков, представлявших собой генетические химеры, которые были построены из нормальных тканей. происходящих как из клеток реципиента, так и из введенных ему эмбриокарциномных клеток. По-видимому, превращение тканей зародыша в тератокарциному связано с нарушением характера экспрессии генов, а не с мутационным процессом, потому что эмбриокарциномные клетки, помещенные в специализированную среду внутри бластоциста, могут дать начало нормальным тканям.
В эволюционной последовательности форм, наблюдаемой у хордовых, сохраняется один и тот же основной план строения тела, однако с течением времени роль мозаичных элементов в процессе развития постепенно становится все менее важной, пока у млекопитающих эти элементы не исчезают окончательно. И наоборот, значение индукционных взаимодействий между отдельными участками зародыша возрастает. У асцидий главное индукционное событие - образование нервной ткани под влиянием хорды. Эта фундаментальная зависимость сохраняется у эволюционно более продвинувшихся хордовых, у которых характерная для асцидий строгая самодифференцировка других частей организма сменяется системой актов детерминации, обусловленных индукционными взаимодействиями. Представляется вероятным, что в тех случаях, когда в результате возникают сходные ткани или структуры, это связано со сходными наборами экспрессирующихся генов, хотя вполне возможно, что переход от самодифференцировки к индукционным взаимодействиям сопровождается сменой триггеров, вызывающих действие генов.
В развитии хордовых помимо смягчения строго мозаичного типа развития произошло еще одно столь же важное изменение. Беррил (N. Berrill) в своей работе «Происхождение позвоночных» указал на значение изменений в соотношении между числом делений дробления, которые прошел зародыш, и началом дефинитивной дифференцировки клеток. У асцидий и оболочников вообще гаструляция начинается, как правило, между 64- и 128-клеточными стадиями. Согласно Конклину, на стадии 64 клеток у зародыша имеется 26 клеток презумптивной покровной эктодермы, 10 клеток презумптивной нервной пластинки, 4 клетки презумптивной хорды и 10 клеток мезенхимы, 4 мышечные клетки хвоста и 10 клеток презумптивной энтодермы. Некоторые из этих клеток претерпевают далее ограниченное и дискретное число клеточных делений, прежде чем приступить к окончательной дифференцировке. Так, у головастикоподобных личинок асцидий имеется 36 мышечных клеток хвоста и 40 клеток хорды. Соответственно сама эта личинка невелика.
Беррил высказал мнение, что хордовые произошли от оболочников, сохранив план строения тела их личинок в результате неотенического развития. Строгое ограничение числа клеток и общих размеров у личинок оболочников жестко ограничивало эволюционные возможности любых неотенических Prochordata. Ввиду того что размеры отдельных клеток практически ограничены, любое существенное увеличение общих размеров организма может достигаться только за счет увеличения числа клеток каждого типа. Можно соглашаться или не соглашаться с гипотезой Беррила (о неотеническом происхождении позвоночных от оболочников), поскольку палеонтологическая летопись хранит по этому поводу молчание и поскольку с равной вероятностью можно считать, что взрослые формы оболочников представляют собой специализированное терминальное добавление к жизненному циклу животных, которые первоначально во взрослом состоянии были подобны хордовым. Однако все же из табл. 4-2 видно, что среди классов хордовых имел место определенный сдвиг соотношений между числом циклов делений и сроками дифференцировки. Oikopleura - маленький неотенический оболочник, ведущий пелагический образ жизни и сохраняющий хвост во взрослом состоянии. Гаструляция у Oikopleura наступает на один цикл дробления раньше, чем у типичных оболочников-асцидий, например у Styela. Судьба клеток у обоих организмов одинакова, однако число клеток хорды и мышечных клеток хвоста показывает, что у Oikopleura детерминация происходит раньше, чем у Styela. У ланцетника Amphioxis - самого примитивного из всех настоящих хордовых - яйцо имеет такие же размеры, как и у Styela. Поскольку и гаструляция, и дифференцировка отстают у него на три цикла дробления, хорда и хвостовая мышца у личинки Amphioxis до начала питания и роста содержат в 8 раз больше клеток, чем у личинки Styela. У позвоночных Petromyzon (минога) и Triturus (тритон) эта тенденция к образованию крупных личинок зашла еще дальше. О том, что такое изменение в соотношении между числом циклов дробления и дифференцировкой имеет генетическую основу, свидетельствует существование у дрозофилы мутантного гена giant, который в гомозиготном состоянии обусловливает увеличение размеров особей (в остальном нормальных) вдвое. Такой эффект возникает в результате дополнительного цикла клеточных делений на поздних стадиях личиночной жизни.