Kniga-Online.club
» » » » Структура научных революций - Томас Сэмюэл Кун

Структура научных революций - Томас Сэмюэл Кун

Читать бесплатно Структура научных революций - Томас Сэмюэл Кун. Жанр: Науки: разное год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:
имеет преимущественно математическую форму, может быть непосредственно соотнесена с природой. Так общая теория относительности Эйнштейна имеет не более чем три таких области[23]. Более того, даже в тех областях, где применение теории возможно, часто требуется теоретическая аппроксимация, которая сильно ограничивает ожидаемое соответствие. Улучшение этого соответствия или поиски новых областей, в которых можно продемонстрировать полное соответствие, требует постоянного совершенствования мастерства и возбуждает фантазию экспериментатора и наблюдателя. Специальные телескопы для демонстрации предсказания Коперником годичного параллакса, машина Атвуда, изобретённая почти столетие спустя после выхода в свет «Начал» Ньютона и дающая впервые ясную демонстрацию второго закона Ньютона; прибор Фуко для доказательства того, что скорость света в воздухе больше, чем в воде; гигантский сцинтилляционный счётчик, созданный для доказательства существования нейтрино, — все эти примеры специальной аппаратуры и множество других подобных им иллюстрируют огромные усилия и изобретательность, направленные на то, чтобы ставить теорию и природу во всё более тесное соответствие друг с другом[24]. Эти попытки доказать такое соответствие составляют второй тип нормальной экспериментальной деятельности, и этот тип зависит от парадигмы даже более явно, чем первый. Существование парадигмы заведомо предполагает, что проблема разрешима. Часто парадигмальная теория прямо подразумевается в создании аппаратуры, позволяющей решить проблему. Например, без «Начал» измерения, которые позволяет произвести машина Атвуда, не значили бы ровно ничего.

Для исчерпывающего представления о деятельности по накоплению фактов в нормальной науке следует указать, как я думаю, ещё на третий класс экспериментов и наблюдений. Он представляет эмпирическую работу, которая предпринимается для разработки парадигмальной теории в целях разрешения некоторых оставшихся неясностей и улучшения решения проблем, которые ранее были затронуты лишь поверхностно. Этот класс является наиболее важным из всех других, и описание его требует аналитического подхода. В более математизированных науках некоторые эксперименты, целью которых является разработка парадигмы, направлены на определение физических констант. Например, труд Ньютона указывал, что сила притяжения между двумя единичными массами при расстоянии между ними, равном единице, должна быть одинаковой для всех видов материи в любом месте пространства. Но собственные проблемы, поставленные в книге Ньютона, могли быть разрешены даже без подсчёта величины этого притяжения, то есть универсальной гравитационной постоянной, и никто в течение целого столетия после выхода в свет «Начал» не изобрёл прибора, с помощью которого можно было бы определить эту величину.

Знаменитый метод определения, предложенный в конце 90-х годов XVIII века Кавендишем, также не был совершенным. Поскольку гравитационная постоянная занимала центральное место в физической теории, многие выдающиеся экспериментаторы неоднократно направляли свои усилия на уточнение её значения[25]. В качестве других примеров работы в этом направлении можно упомянуть определения астрономических постоянных, числа Авогадро, коэффициента Джоуля, заряда электрона и т. д. Очень немногие из этих тщательно подготовленных попыток могли бы быть предприняты, и ни одна из них не принесла бы плодов без парадигмальной теории, которая сформулировала проблему и гарантировала существование определённого решения.

Усилия, направленные на разработку парадигмы, не ограничиваются, однако, определением универсальных констант. Они могут быть нацелены, например, на открытие количественных законов: закон Бойля, связывающий давление газа с его объёмом, закон электрического притяжения Кулона и формула Джоуля, связывающая теплоту, излучаемую проводником, по которому течёт ток, с силой тока и сопротивлением, — все они охватываются этой категорией. Может быть, тот факт, что парадигма является предпосылкой открытия подобного типа законов, не достаточно очевиден. Часто приходится слышать, что эти законы открываются посредством одних лишь измерений, предпринятых ради самих этих законов без всяких теоретических предписаний. Однако история никак не подтверждает применение такого чисто бэконовского метода. Эксперименты Бойля были бы немыслимы, пока воздух рассматривался как упругий флюид, к которому можно применять понятие гидростатики (а если бы их и можно было бы поставить, то они получили бы другую интерпретацию или не имели бы никакой интерпретации вообще)[26]. Успех Кулона зависел от создания им специального прибора для измерения силы, действующей на точечные заряды. (Те, кто до него измерял электрические силы, используя для этого обычные весы и т. д., не могли обнаружить постоянной зависимости или даже простой регулярности.) Но конструкция его прибора в свою очередь зависела от предварительного признания того, что каждая частичка электрического флюида воздействует на другую на расстоянии. Кулон искал именно такую силу взаимодействия между частицами, которую можно было бы легко представить как простую функцию от расстояния[27]. Эксперименты Джоуля также можно использовать для иллюстрации того, как количественные законы возникают благодаря разработке парадигмы. Фактически между качественной парадигмой и количественным законом существует столь общая и тесная связь, что после Галилея такие законы часто верно угадывались с помощью парадигмы за много лет до того, как были созданы приборы для их экспериментального обнаружения[28].

Наконец, имеется третий вид эксперимента, который нацелен на разработку парадигмы. Этот вид эксперимента более всех других похож на исследование. Особенно он преобладает в те периоды, когда в большей степени рассматриваются качественные, нежели количественные аспекты природных закономерностей, притом в тех науках, которые интересуются в первую очередь качественными законами. Часто парадигма, развитая для одной категории явлений, ставится под сомнение при рассмотрении другой категории явлений, тесно связанной с первой. Тогда возникает необходимость в экспериментах для того, чтобы среди альтернативных способов применения парадигмы выбрать путь к новой области научных интересов. Например, тепловая теория использовалась в качестве парадигмы в изучении процессов нагревания и охлаждения при смешивании и при изменении состояния. Но теплота может излучаться и поглощаться и во многих других случаях — например, при химическом соединении, при трении, благодаря сжатию или поглощению газа, — и к каждому из этих явлений тепловую теорию можно приложить по-разному. Если бы вакуум, например, имел теплоёмкость, то нагревание при сжатии можно было бы объяснить как результат смешивания газа с пустотой или изменением удельной теплоёмкости газов при изменении давления. Кроме того, есть и многие другие возможности объяснения. Для тщательного исследования этих возможных способов и их дифференциации предпринималось множество экспериментов, причём все они исходили из парадигмального характера тепловой теории и использовали её при разработке экспериментов и для интерпретации их результатов[29]. Как только был установлен факт нагревания при увеличении давления, все последующие эксперименты в этой области были подчинены тем самым парадигме. Если само явление установлено, то как ещё можно было объяснить выбор данного эксперимента?

Обратимся теперь к теоретическим проблемам нормальной науки, которые оказываются весьма близкими к тому кругу проблем, которые возникают в связи с наблюдением и экспериментом. Часть нормальной теоретической работы, хотя и довольно небольшая, состоит лишь в использовании существующей

Перейти на страницу:

Томас Сэмюэл Кун читать все книги автора по порядку

Томас Сэмюэл Кун - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Структура научных революций отзывы

Отзывы читателей о книге Структура научных революций, автор: Томас Сэмюэл Кун. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*