Карл Гильзин - Путешествие к далеким мирам
Кстати сказать, принципиально возможно использовать этот метод определения скорости корабля и без помощи эха. Нужно лишь установить истинную величину «красного смещения» для радиосигналов, излучаемых каким-либо космическим излучателем, и сравнить ее с величиной, измеренной с Земли; разница будет определяться собственной скоростью движения корабля.[109] Таким образом можно определить скорость корабля по «красному смещеник» не только радиоволн, но и видимого света звезд. Между прочим, в 1956 году впервые удалось непосредственно сравнить «красное смещение» радиосигналов, излучаемых одной парой галактик, с «красным смещением» излучаемого ею же видимого света. Очень интересно, что оба метода измерения дали одну и ту же скорость «убегания» галактик — примерно 17 тысяч километров в секунду.
В общем, можно сказать, что разработка методов космонавигации в основном еще впереди. Здесь непочатый край работы для ученых, штурманов, изобретателей. Может быть, со временем и кто-либо из юных читателей этой книги предложит метод, который станет наиболее принятым в астронавтике.
Конечно, в первое время, когда начнут совершаться межпланетные полеты, навигация в мировом пространстве будет осуществляться именно с помощью указанных выше методов, главным образом с использованием оптических средств. Может быть, только некоторую помощь штурману корабля окажут его коллеги, оставшиеся на Земле. С помощью радиолокационных станций они будут наблюдать за полетом корабля, сверять его курс с заданным и сообщать на корабль по радио о всех необходимых поправках. Вычисление таких поправок представляет собой весьма громоздкую и трудоемкую операцию, и оно будет осуществляться сложными электронными вычислительными машинами.
Зато потом, по мере освоения мирового пространства и накопления опыта межпланетных полетов, космонавигация все в большей степени будет становиться автоматической. За штурманом сохранится только наблюдение за действием автоматической навигационной аппаратуры и вмешательство в случае аварийной необходимости. Корабль поведут по курсу автоматы.
По-разному может осуществляться это автоматическое вождение корабля в Космосе.
Можно, например, создать сложный «автопилот-автоштурман», мозговой центр на корабле, который должен заменить штурмана. Такой автопилот представит собой, по существу, сложную электронную вычислительную машину, которую вряд ли удастся создать без широкого применения полупроводников. Да и с их помощью непросто придать такой машине приемлемые для космического корабля размеры и вес.
Перед взлетом автопилот получит задание в виде заранее рассчитанного маршрута. Это задание может закладываться в машину, например, в виде магнитной ленты, как это делается в некоторых из существующих электронных машинах. Выполняя полученное задание, автопилот станет включать и выключать в нужные моменты основной и рулевые двигатели корабля, осуществлять другие операции по его управлению. Все операции по определению координат корабля, его скорости и направления движения будут осуществляться также автоматически, хотя бы с использованием описанных выше методов. Так же автоматически автопилот рассчитывает все необходимые поправки к курсу, и сам же осуществит их с помощью органов управления корабля. Полученный исправленный курс автопилот вычертит на новой магнитной ленте или же изберет одну из запасных лент с заранее рассчитанными курсами.
Можно обойтись без сложного и громоздкого оборудования на борту корабля, если удастся обеспечить непрерывную радиосвязь корабля с Землей. В этом случае электронно-счетную машину автопилота можно установить на Земле. Понятно, что она окажется более совершенной, ибо исчезнут ограничения в размерах и весе. Приборы на самом корабле и на Земле станут непрерывно следить за полетом корабля и устанавливать все отклонения от заданного курса. Данные этих «наблюдений» получит наземный «мозговой центр», который выработает необходимые поправки к курсу и, в свою очередь, передаст их на корабль. Без вмешательства человека, автоматически, придут в действие органы управления корабля, чтобы выполнить команду, полученную с Земли. Курс выправится. Только в некоторые моменты полета, в частности при посадке на планету, управление кораблем придется осуществлять, очевидно, с его борта.
Со временем, когда мировое пространство будет освоено человеком и межпланетные полеты станут частыми и регулярными, окажутся возможными и методы автоматической радионавигации, широко применяемые в настоящее время в авиации и при наведении управляемых снарядов. Тогда уже исчезнет необходимость в определении координат корабля, величины и направления скорости его полета, без чего не может обойтись космонавигация при всех других методах, описанных выше. На помощь придет радиолуч радиолокационной установки — его можно «протянуть» от одной планеты к другой, для чего на планетах придется соорудить радиомаяки. Их можно соорудить и на спутниках планет или же сами маяки превратить в искусственные спутники планет или Солнца. Маяки могут излучать и «плавающие» радиолучи, периодически покрывающие значительную часть пространства, или же посылать радиоимпульсы во всех направлениях.
Но как же с помощью этих радиолучей управлять кораблем? Систем радионавигации может быть много. В одном случае радиолуч все время ведет корабль: он не выходит из луча так же, как не выходит из него наводимый на цель управляемый снаряд. Луч направлен все время на цель, и полет происходит по кратчайшей прямой — это потребует увеличенного расхода топлива и будет возможно только для курьерских перелетов более далекого будущего. В другом случае радиосигналы, получаемые кораблем от нескольких радиомаяков, установленных в разных точках пространства (достаточно четырех таких маяков), дадут радиоавтопилоту все необходимые данные для управления кораблем. В третьем случае… но, пожалуй, достаточно. Сейчас еще трудно сказать, какому методу радионавигации будет отдано предпочтение штурманами межпланетных кораблей будущего. Каждый из них обладает своими достоинствами и недостатками. Одно ясно — по мере развития астронавтики участь межпланетных штурманов будет непрерывно облегчаться: им придут на помощь многие замечательные достижения науки, чтобы привести корабль к далекой цели с минимальной затратой топлива.
Но до тех пор штурманам космических кораблей придется нелегко. Мы уже говорили, как трудно установить отклонение межпланетного корабля от правильного курса. А ведь это только часть дела. Как устранить отклонения? Как заставить корабль снова лечь на нужный курс?
На первый взгляд кажется, что это очень просто. Стоит включить двигатель корабля — и он заставит его лететь в нужном направлении. В действительности дело обстоит гораздо сложнее. Конечно, поправки к курсу должны быть осуществлены с помощью двигателей корабля — основных или рулевых. Но в каком направлении и на какое время должна быть приложена к кораблю их тяга, чтобы получить нужный эффект? Ведь нужно иметь в виду, что приложение к кораблю силы в некотором направлении вовсе не вызовет его движения именно в этом направлении: вспомните детскую игрушку — гироскоп, который движется иногда совсем не туда, куда его толкаешь! Эффект этого действия силы в общем случае будет более сложным, так как полученное кораблем в результате действия силы ускорение сложится с ускорением, которое уже имеет корабль в своем движении по траектории.
Так, например, если к кораблю, летящему по эллиптической орбите вокруг Солнца, приложить силу, касательную к траектории, чтобы увеличить скорость, оказавшуюся меньше заданной, то в результате не только возрастет большая ось эллипса, но и увеличится его эксцентриситет. Точно так же сила, приложенная к кораблю в направлении, перпендикулярном траектории, не только изменит эксцентриситет эллипса, но и вызовет его вращение в пространстве.
Именно поэтому расчет необходимых изменений траектории полета корабля и есть такое сложное дело. Вероятнее всего, переход корабля с ошибочной траектории на нужную будет производиться не сразу, в результате одного приложения силы к нему, а в виде сложного маневра с переходом через промежуточные траектории.
Понятно, что осуществление всех необходимых расчетов штурманом корабля в полете представляет собой весьма нелегкую проблему. Каким бы хорошим математиком ни был штурман (а он должен быть очень хорошим математиком!), все равно ему не справиться с ней без помощи вычислительных машин — просто времени не хватит.
Сможет ли корабль поддерживать в полете двухстороннюю радиосвязь с Землей, с другими планетами или с другими кораблями, находящимися в мировом пространстве?
Специалисты-радисты утверждают, что эта связь — задача, посильная для современной радиотехники. Конечно, самое простое — связь Земли с кораблем, так как на Земле может быть сооружена мощная радиостанция, а дальность приема пропорциональна мощности, точнее — корню квадратному из мощности передающей станции. Больше всего потребная мощность будет в том случае, когда станция излучает радиоволны во всех направлениях. Расчеты показывают, что в этом случае наземная станция мощностью 100 киловатт может быть услышана на корабле, имеющем антенну площадью 1 кв. метр, с расстояния до 10 миллионов километров. Совсем не так много! Чтобы увеличить дальность приема в 5 раз, мощность передающей станции придется увеличить в 25 раз, то есть до 2500 киловатт. Но ведь наиболее мощные земные радиопередатчики имеют в настоящее время мощность порядка 1000 киловатт. Как же в таком случае обеспечить связь с кораблем, летящим, например, на Марс? Ведь для этого понадобится станция огромной мощности!