Занимательная астрономия - Яков Исидорович Перельман
«Навострите уши, физики: замышляется вторжение в вашу область», — приходят на память слова Кеплера, сказанные им, правда, по другому поводу. Действительно, ничего подобного не мог представить себе до сих пор ни один физик. В обычных условиях столь значительное уплотнение совершенно немыслимо, так как промежутки между нормальными атомами в твердых телах слишком малы, чтобы допустимо было сколько-нибудь заметное сжатие их вещества. Иначе обстоит дело в случае «изувеченных» атомов, утративших те электроны, которые кружились вокруг ядер. Потеря электронов уменьшает поперечник атома в несколько тысяч раз, почти не уменьшая его массы; обнаженное ядро меньше нормального атома примерно во столько раз, во сколько муха меньше крупного здания. Сдвигаемые чудовищным давлением, господствующим в недрах звездного шара, эти уменьшенные атомы-ядра могут сблизиться в тысячи раз теснее, чем нормальные атомы, и создать вещество той неслыханной плотности, какая обнаружена на спутнике Сириуса. Более того, сейчас указанная плотность даже превзойдена в так называемой звезде ван-Маанена. Эта звездочка 12-й величины, по размерам не превышающая земного шара, состоит из вещества в 400 000 раз более плотного, нежели вода!
Рис. 76. Спутник Сириуса состоит из вещества в 60 000 раз более плотного, чем вода. Спичечная коробка этого вещества могла бы уравновесить груз из трех десятков человек
И это еще не самая крайняя степень плотности. Теоретически можно допускать существование гораздо более плотных веществ. Диаметр атомного ядра составляет не более одной 10 000-й диаметра атома, а объем, следовательно, не более 1/1012 объема атома. 1 м3 металла содержит всего около 1/1000 мм3 атомных ядер, и в этом крошечном объеме сосредоточена вся масса металла. 1 см3 атомных ядер должен, таким образом, весить примерно 10 миллионов тонн (рис. 77).
После сказанного не будет казаться невероятным открытие звезды, средняя плотность вещества которой еще в 500 раз больше, чем у вещества упомянутой ранее звезды Сириус В. Мы говорим о небольшой звездочке 13-й величины в созвездии Кассиопеи, открытой в конце 1935 г. Будучи по объему не больше Марса и в восемь раз меньше земного шара, звезда эта обладает массой, почти втрое превышающей массу нашего Солнца (точнее, в 2,8 раза). В обычных единицах средняя плотность ее вещества выражается числом 36 000 000 г/см3. Это означает, что 1 см3 такого вещества весил бы на Земле 36 т! Вещество это, следовательно, плотнее золота почти в 2 миллиона раз[43]. О том, сколько должен весить кубический сантиметр такого вещества, взвешенный на поверхности самой звезды, мы побеседуем в главе V.
Рис. 77. Один кубический сантиметр атомных ядер мог бы уравновесить океанский пароход и при весьма неплотной упаковке их. Плотно же уложенные в объеме 1 см3 атомные ядра весили бы 10 миллионов тонн!
Немного лет назад ученые, конечно, считали бы немыслимым существование вещества в миллионы раз плотнее платины.
Бездны мироздания скрывают, вероятно, еще немало подобных диковинок природы.
Почему звезды называются неподвижными?
Когда в старину дан был звездам такой эпитет, желали подчеркнуть этим, что в отличие от планет звезды сохраняют на небесном своде неизменное расположение. Они, конечно, участвуют в суточном движении всего неба вокруг Земли, но это кажущееся движение не нарушает их взаимного расположения. Планеты же непрестанно меняют свои места относительно звезд, бродят между ними и оттого получили в древности наименование «блуждающих звезд» (буквальный смысл слова «планета»).
Рис. 78. Фигуры созвездий медленно меняются с течением времени. Средний рисунок изображает «ковш» Большой Медведицы в настоящее время, верхний — 100 тыс. лет назад, нижний — через 100 тыс. лет после нашего времени
Мы знаем теперь, что представление о звездном мире как о собрании солнц, застывших в своей неподвижности, совершенно превратно. Все звезды[44],в том числе и наше Солнце, движутся одна относительно другой со скоростью в среднем 30 км/с, т. е. с такой же, с какой планета наша обегает свою орбиту. Значит, звезды ничуть не менее подвижны, чем планеты. Напротив, в мире звезд мы встречаемся в отдельных случаях с такими огромными скоростями, каких нет в семье планет; известны звезды — их называют «летящими», — которые несутся по отношению к нашему Солнцу с огромной скоростью 250–300 км/с.
Но если все видимые нами звезды хаотически движутся с громадными скоростями, пробегая миллиарды километров ежегодно, то почему не замечаем мы этого бешеного движения? Почему звездное небо представляет издавна картину величавой неподвижности?
Причину нетрудно отгадать: она кроется в невообразимой удаленности звезд. Случалось ли вам наблюдать с возвышенного пункта за поездом, движущимся вдали, близ горизонта? Разве не казалось вам тогда, что курьерский поезд ползет как черепаха? Скорость, головокружительная для наблюдателя вблизи, превращается в черепаший шаг при наблюдении с большого расстояния. То же происходит и с движением звезд; только в этом случае относительное удаление наблюдателя от движущегося тела гораздо значительнее. Самые яркие звезды удалены от нас в среднем менее других — именно (по Каптейну) на 800 миллионов километров, перемещение же такой звезды за год составляет, скажем, миллиард (1000 миллионов) километров, т. е. в 800 000 раз меньше. Такое перемещение должно усматриваться с Земли под углом менее 0″,25 — величина, едва уловимая точнейшими астрономическими инструментами. Для невооруженного же глаза оно совершенно незаметно, даже если длится столетия. Только кропотливыми инструментальными измерениями удалось обнаружить движение многих звезд (рис. 78, 79).
Рис. 79. Движение трех звезд — нашего Солнца, звезды α Центавра и Сириуса
Рис. 80. Масштаб звездных движений; два крокетных шара, один в Петербурге, другой в Томске, движутся со скоростью 1 км в столетие — вот уменьшенное подобие