Невидимая Вселенная. Темные секреты космоса - Йостейн Рисер Кристиансен
Сразу после Большого взрыва никаких сооруженных людьми ускорителей частиц, естественно, не было, но тем не менее Вселенная была наполнена все теми же мощными столкновениями, которые сейчас воссоздаются в ЦЕРНе. Почему все это происходило? Да потому что было адски жарко. Ведь как вы, возможно, помните, по мере перематывания времени назад, к Большому взрыву, Вселенная будет становиться все плотнее и раскаленнее. Когда некая субстанция, например газ, обладает высокой температурой, это просто-напросто означает, что частицы в нем быстро двигаются. Спустя миллиардную долю секунды после Большого взрыва частицы во Вселенной перемещались с огромными скоростями. В то же время Вселенная была гораздо более сжата, чем сегодня, и частицы, обитавшие в ней, непрерывно сталкивались. Из-за высоких скоростей эти столкновения были настолько же мощные, что и воссоздаваемые ЦЕРНом. А если посмотреть, что происходило в момент Большого взрыва, то станет очевидно, что температура была еще выше, а столкновения — более ожесточенными. Когда Вселенная была еще совсем молодой, в ней происходили столкновения того же типа, что и в адронном коллайдере, только происходили они буквально повсюду.
(В LHC-ускорителе ЦЕРНа сталкиваются протоны. В ранней Вселенной сталкивались всевозможные частицы. Механизмы те же, но, строго говоря, ускоритель LHC воспроизводит лишь небольшую часть того, что произошло во Вселенной сразу после Большого взрыва.)
Чем ближе мы подходим к Большому взрыву, тем больше появляется мощных столкновений на любой вкус и цвет. И чем яростнее частицы сталкиваются, тем больше энергии они выделяют. А формула Е=mc2 говорит о следующем: чем больше энергии высвобождается, тем более тяжелые частицы можно создать. Ведь точно так же, как частица и античастица способны превратиться в энергию, энергия способна превратиться в частицу и античастицу. Если вимпы темной материи все же существуют, то в период, достаточно близкий к Большому взрыву, повсеместные столкновения, судя по всему, порождали их в неимоверных количествах. Получается, вимпы и множество других видов частиц должны были постоянно возникать и снова исчезать в водовороте первичного бульона Вселенной.
При настолько частых столкновениях этот первичный бульон находился в состоянии, которое называют термодинамическим равновесием. Это означает, что между различными частицами устанавливается определенное количественное соотношение. Однако Вселенная начинает остывать и расширяться. Столкновения становятся все более редкими и менее ожесточенными. А чтобы столкнуть вимпы, которые признают исключительно слабое взаимодействие, нужно еще постараться. И вскоре Вселенная настолько выгорает и охлаждается, что в столкновениях больше не рождаются вимпы. Сами же частицы темной материи сталкиваются и аннигилируются теперь крайне редко. Оставшиеся вимпы начинают свободно перемещаться по космосу, не сталкиваясь вообще ни с чем. Многие считают, что именно из этих вимпов и состоит окружающая нас сегодня темная материя — из тех самых вимпов, которые появились, когда возраст Вселенной составлял примерно миллиардную долю секунды, и которые не успели вовремя аннигилировать.
А вот и «чудо вимпа»: если вимпы существуют, то к их появлению привели именно экстремально высокие температуры сразу после Большого взрыва. За это отвечают правило Е=mc2 и слабое взаимодействие. А если вимпы — стабильные частицы, то они должны были дожить и до наших дней. Мы примерно знаем, сколько материи есть сейчас во Вселенной. Темная материя должна весить примерно в пять раз больше, чем вся обычная. Сколько темной материи осталось от Большого взрыва, зависит от двух факторов: сколько частиц темной материи существует на сегодняшний день и сколько весит каждая из них. У нас есть теоретические основания полагать, что масса вимпа темной материи более чем в 100 раз превышает массу протона. Общее количество вимпов определяется тем, насколько они были подвержены столкновениям и аннигиляции в период сразу после Большого взрыва. Зная примерную массу вимпа, можно приблизительно оценить, насколько легко они будут сталкиваться. Так мы рассчитаем, сколько из них сейчас обитает в космосе. Количество полученных нами вимпов с такой массой почти идеально соответствует тому, сколько темной материи должно быть в нашей Вселенной.
То была длинная и, возможно, чересчур заумная череда аргументов и умозаключений. Суть в том, что благодаря знаниям физики элементарных частиц можно подсчитать, сколько должно быть вимпов во Вселенной сегодня, если они, конечно, существуют. Это число прекрасно согласуется с количеством темной материи, которое мы рассчитываем найти в ходе наблюдений за космосом. Это и есть «чудо вимпа»: они идеальные кандидаты на роль частицы темной материи по мнению как физиков, так и астрономов.
Но тут возникает проблема. Предположим, вимпы действительно ведут себя именно так: масса у них чуть более чем в 100 раз превышает массу протона, а сталкиваются они именно так часто, как мы думаем. Ну тогда эксперименты по поиску вимпов должны были уже давно справиться со своей задачей. Но этого почему-то не произошло. По крайней мере никаких однозначных открытий сделано не было. Вот так «чудо вимпа» и превратилось в проклятие. Если эти частицы существуют, почему же наши эксперименты их не улавливают? Многие считают, будто вимпы скрываются за пределами досягаемости сегодняшних экспериментов и вот-вот будут обнаружены.
Когда я говорю, например: «У нас есть теоретические основания полагать», это не означает, что подобным утверждениям следует безоговорочно верить. Пока мы точно не знаем, что в и мп за частица, так что сложно сказать что-то конкретное о ее поведении, массе и так далее. Тем не менее давайте взглянем на некоторые аспекты физики, скрывающиеся, по нашему мнению, за пределами Стандартной модели. Одна из наиболее обсуждаемых гипотез — существование того, что называют суперсимметрией. Многие физики убеждены, что существует суперсимметрия и в скором времени мы откроем целую кучу так называемых суперпартнеров. Что же такое суперсимметрия? Каким образом она поможет нам разобраться с вимпами? И как тогда обнаружить такой вимп? Давайте-ка посмотрим, что предлагает нам суперсимметрия.
Симфония сверхсимметрийВ Стандартной модели мы оперируем четырьмя различными фундаментальными взаимодействиями: гравитационным, электромагнитным, сильным и слабым. Но действительно ли четыре взаимодействия — полностью независимые явления? Или же это просто разные проявления некой первичной силы, из которой все и берет начало? Объясню на примере: вот представьте, что идете по улице и внезапно ощущаете, как вам заехали кулаком в спину и ногой в ногу. Вы ощутили два разных удара, но вполне естественно предположить, что в обоих инцидентах виновен один первобытный кретин.
История современной физики — это