Кип Торн - Черные дыры и складки времени. Дерзкое наследие Эйнштейна
Принцип относительности будет играть важную роль далее в этой книге. Поэтому я хочу посвятить несколько страниц его подробному объяснению.
Для такого объяснения мне потребуется понятие системы отсчета. Система отсчета — это лаборатория, содержащая все измерительные приборы, которые могут потребоваться для проведения любых экспериментов. Эта лаборатория и все ее оборудование должны двигаться через Вселенную как одно целое, иными словами, все ее части должны двигаться одинаково. Основным является именно то, как движется система отсчета. Когда физики говорят о «различных системах отсчета», они имеют в виду системы отсчета, которые по-разному движутся, а вовсе не лаборатории с разным оборудованием.
Лаборатория и приборы системы отсчета не обязательно должны быть реальными. Они, естественно, могут быть воображаемыми, существующими лишь в сознании физика, который, например, задает вопрос: «Если бы я, находясь на борту космического корабля, летящего в поясе астероидов, стал измерять размер одного из них, что бы у меня получилось?». Этот физик просто представляет себе, что у него есть система отсчета (лаборатория), связанная с космическим кораблем, и что он использует приборы в этой лаборатории для проведения своих измерений.
Эйнштейн сформулировал свой принцип относительности не для произвольных систем отсчета, а для совершенно определенного класса систем: систем (лабораторий), на которые не действуют никакие внешние силы и которые, следовательно, движутся свободно (по инерции), сохраняя свое движение равномерным, таким, как оно было вначале. Такие системы Эйнштейн назвал инерциальными, поскольку их движение определяется исключительно их инерцией.
Система отсчета, связанная с взлетающей ракетой (лаборатория внутри этой ракеты), не является инерциальной, поскольку ее движение определяется как инерцией, так и реактивной тягой. Эта тяга приводит к тому, что движение ракеты не равномерно. Система отсчета, связанная с космическим челноком, который входит в земную атмосферу, также неинерциальная, поскольку трение между обшивкой челнока и молекулами воздуха тормозит челнок, делая и его движение неравномерным.
Самое главное, рядом с любым массивным телом, например, таким, как Земля, все системы отсчета оказываются под воздействием гравитационного тяготения. Экранировать систему отсчета (так же, как и любой другой предмет) от гравитационного тяготения невозможно. Таким образом, ограничиваясь лишь инерциальными системами отсчета, тогда, в 1905 г., Эйнштейн исключил из рассмотрения физические проблемы, в которых была важна гравитация[51]; он рассматривал идеализированную модель Вселенной, в которой гравитации вообще не было. Предельные идеализации, подобные этой, чрезвычайно важны для прогресса в физике: вначале мы отбрасываем свойства Вселенной, которые слишком сложны для рассмотрения, и возвращаемся к ним, лишь полностью разобравшись с оставшимися более простыми. Эйнштейн завершил свое описание идеализированной Вселенной, лишенной гравитации, в 1905 г. После этого он взялся за более сложную задачу: описание свойств пространства и времени в нашей реальной Вселенной, в которой есть гравитация. В результате он пришел к заключению, что гравитация искажает пространство и время.
Понимание того, что такое система отсчета, дает нам возможность более глубоко и точно сформулировать принцип относительности Эйнштейна: Если какой-либо физический закон получен применительно к измерениям в одной инерциальной системе отсчета, то применительно к измерениям в любой другой инерциальной системе отсчета этот закон должен иметь точно такую же математическую и логическую форму. Другими словами, с точки зрения законов физики все инерциальные системы отсчета (или все виды равномерного движения) одинаковы. Приведем в качестве примера два физических закона, чтобы сделать это более понятным:
• «Любое свободное тело (такое, на которое не действуют никакие силы), которое изначально находилось в состояния покоя, будет всегда оставаться в покое. Любое свободное тело, которое в инерциальной системе отсчета изначально двигалось, будет продолжать двигаться прямолинейно с постоянной скоростью.» Поскольку у нас есть все основания считать, что данная релятивистская формулировка первого закона Ньютона справедлива, по крайней мере, в одной инерциальной системе отсчета, то, согласно принципу относительности, она должна быть справедлива во всех остальных таких системах, независимо от того, в каком месте Вселенной они находятся и как быстро они движутся.
• Уравнения Максвелла должны иметь одинаковую форму во всех системах отсчета. В ньютоновской физике найти такую форму не удавалось (и как следствие, магнитные силовые линии оказывались замкнутыми в одних системах отсчета и разорванными в других), что глубоко беспокоило Лоренца, Пуанкаре, Лармора и Эйнштейна. Для Эйнштейна было совершенно неприемлемо то, что эти уравнения были просты и красивы в системе отсчета, связанной с эфиром, но оказывались сложными и уродливыми в остальных, движущихся относительно эфира системах отсчета. Перестроив основы физики, Эйнштейн добился того, что уравнения Максвелла приобрели одинаковую, простую и красивую форму в любой системе отсчета (и магнитные силовые линии были всегда замкнуты) в соответствии с его принципом относительности.
Принцип относительности на самом деле является мета принципом, в том смысле, что это не отдельный физический закон, а общее правило, которому (как утверждал Эйнштейн) должны удовлетворять все законы физики, вне зависимости от того, какие это законы и от того, описывают ли они электричество и магнетизм, атомы и молекулы, паровые машины или спортивные автомобили. Значение этого метапринципа огромно. Именно им следует проверять все новые законы. Если новый закон проходит такую проверку (одинаков во всех системах отсчета) то, возможно, он действительно описывает какие-то свойства нашей Вселенной. Если же он не выдерживает такой проверки, то, согласно Эйнштейну, он неверен и должен быть отвергнут.
Весь наш опыт, приобретенный в течение ста лет, прошедших с 1905 г., подтверждает правоту Эйнштейна. Все новые законы, которые успешно описывают реальную Вселенную, полностью удовлетворяют принципу относительности Эйнштейна. Этот принцип стал во главе физических законов.
* * *В мае 1905 г., после того, как беседа с Микеланджело Бессо позволила Эйнштейну преодолеть барьер в собственном сознании и отказаться от абсолютного пространства и времени, он всего за несколько недель сформулировал основные принципы новой физики и вывел следствия, касающиеся природы пространства, времени, электромагнетизма и поведения быстро движущихся объектов. Два следствия были особенно впечатляющими: во-первых, масса может преобразовываться в энергию (это стало основой для создания атомной бомбы; см. главу 6), во-вторых, инерция любого тела по мере приближения его скорости к скорости света растет так сильно, что какая бы сила на него ни действовала, оно никогда этой скорости не достигнет («ничто не может двигаться быстрее света»)[52].
В конце июня Эйнштейн написал статью с описанием своих идей и их следствий и послал ее в Annalen der Physik. Статья носила несколько приземленный заголовок «К электродинамике движущихся тел». Но приземленной ее назвать было нельзя. Даже поверхностный взгляд показывал, что «технический эксперт третьего класса» швейцарского патентного бюро Эйнштейн предлагает совершено новый фундамент для всей физики, предлагает метапринцип, которому должны подчиняться все будущие законы физики, что он полностью пересматривает представления о пространстве и времени и выводит из этого впечатляющие следствия. Эта теория вскоре стала известна как специальная теория относительности (специальной она была названа потому, что не учитывала влияние гравитации и корректно описывала Вселенную в тех «специальных» случаях, когда этим влиянием можно было пренебречь).
Статья Эйнштейна была получена в офисе Annalen der Physik в Лейпциге 30 июня 1905 г., отправлена на рецензию, признана приемлемой и опубликована.
В течение нескольких недель после ее выхода Эйнштейн жил ожиданием отклика от величайших физиков тех дней. Его точка зрения и результаты были столь революционны и к тому же имели так мало экспериментальных подтверждений, что он ожидал споров и жесткой критики. Вместо этого ответом было полное молчание. Наконец, несколько месяцев спустя пришло письмо из Берлина: Макс Планк желал получить пояснения по некоторым техническим вопросам. Эйнштейн был вне себя от радости: ему удалось привлечь внимание Планка, одного из самых знаменитых среди живых физиков. Еще больше Эйнштейна воодушевило то, что годом позже Планк начал использовать его принцип относительности как основной инструмент в своих собственных исследованиях. Одобрение Планка, постепенное одобрение других ведущих физиков и, в первую очередь, его собственная непоколебимая уверенность в собственной правоте пригодились Эйштейну в последующие двенадцать лет, когда споры вокруг его теории, как он и ожидал, не утихали. Эти споры даже в 1922 г. были еще настолько сильны, что когда секретарь Шведской Академии наук уведомил его телеграммой о том, что он удостоен Нобелевской премии, в телеграмме было явно указано: работы, за которые он награждается, не включают теорию относительности.