Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики - Сасскинд Леонард
В экспериментах с элементарными частицами роль скорости затвора играет энергия столкновения частиц: чем она выше, тем быстрее затвор. К сожалению, скорость затвора серьёзно ограничена возможностями ускорения частиц до очень высоких энергий. В идеале хотелось бы различать движения, происходящие на интервалах короче планковского времени. Для этого потребовалось бы разгонять частицы до энергий, превышающих планковскую массу, то есть принцип прост, но его практическая реализация невозможна.
Пора сделать паузу и рассмотреть невероятные трудности, с которыми столкнулась современная физика. Для наблюдения самых малых объектов и самых быстрых движений физики на протяжении двадцатого века применяли всё более и более крупные ускорители. Первые из них были простыми настольными установками, способные зондировать строение атомов. Ядра потребовали более крупных машин размером с большие здания. Кварки были открыты лишь тогда, когда ускорители выросли до размеров в несколько километров. Крупнейший сегодняшний ускоритель, Большой адронный коллайдер в Женеве, Швейцария, имеет окружность почти тридцать километров, но всё равно слишком мал для ускорения частиц до планковской массы. Насколько большой нужен ускоритель, чтобы на нём можно было изучать движения планковской частоты? Сказать, что ответ обескураживает, — это ничего не сказать; для разгона частицы до планковской массы ускоритель должен иметь размер не меньше нашей Галактики.
Говоря упрощённо, наблюдение планковских движений с помощью современной технологии сравнимо с фотографированием вращающегося самолётного пропеллера камерой, затвор которой остаётся открытым около десяти миллионов лет. Неудивительно, что элементарные частицы выглядят очень маленькими, поскольку всё, что мы можем увидеть, — это ступица.
Раз эксперименты не позволяют нам убедиться, что частицы являются раскидистыми высокочастотными вибрирующими структурами, нам остаётся лишь обращаться к лучшим имеющимся теориям. Во второй половине двадцатого века самой мощной математической основой для изучения элементарных частиц была квантовая теория поля. Эта великолепная теория первым делом постулирует: частицы столь малы, что их можно считать точками в пространстве. Но вскоре эта картина разрушается. Частицы быстро окружают себя другими частицами, которые появляются и исчезают в умопомрачительном темпе. Эти новые пришельцы-ушельцы сами окружены ещё более быстро появляющимися и исчезающими частицами. Фотографирование со всё более короткой выдержкой открывало бы нам внутри частиц всё новые и новые структуры — всё быстрее и быстрее появляющиеся и исчезающие частицы. Медленная камера видит молекулу как туманное бесструктурное пятнышко. Она проявляется как совокупность атомов, только если скорость затвора достаточно велика, чтобы поймать движения атомов. История повторяется на атомном уровне. Размазанный электрический заряд вокруг ядра требует ещё более быстрого эксперимента, чтобы разрешить его на электроны. Ядра разрешаются на протоны и нейтроны, которые состоят из кварков и так далее.
Но эти всё более быстрые фотографии не показывают главной особенности, которую мы ищем: расширения структуры, которая занимает всё больше и больше пространства. Вместо этого они показывают всё меньшего и меньшего размера частицы, образующие нечто вроде русской матрёшки. Для объяснения того, как ведут себя частицы вблизи горизонтов, это нам не подходит.
Теория струн куда более многообещающая. То, что она говорит, настолько контринтуитивно, что физики много лет не знают, что с этим делать. Элементарные частицы, описываемые теорией струн, — предположительно, крошечные колечки из струн — как раз похожи на составные пропеллеры. Возьмём для начала медленный затвор. Элементарная частица выглядит почти как точка; будем считать, что это ступица. Теперь ускорим затвор, чтобы он оставался открытым чуть дольше планковского времени. На снимке становится видно, что частица — это струна.
Ускорим затвор ещё сильнее. Теперь вы видите, что каждый участок струны флуктуирует и вибрирует, так что новая картинка выглядит более запутанной и растянутой.
Но не будем на этом останавливаться, повторим процесс. Каждая маленькая петелька, каждый изгиб струны разрешается на ещё быстрее флуктуирующие петли и завитки.
Что видит Боб, когда наблюдает за струноподобной частицей, падающей к горизонту? Сначала колебательные движения слишком быстры, чтобы их заметить, и всё, что он видит, — это крошечный ступицеподобный центр. Но вскоре проявляется странная природа времени вблизи горизонта, и движения струны начинают казаться всё более медленными. Постепенно Боб видит всё большую часть колеблющейся структуры, точно так же, как при наблюдении Алисиного составного пропеллера. С течением времени становятся видны всё более быстрые колебания, а струна кажется растущей и распространяющейся по всему горизонту чёрной дыры.
Но что будет, если мы падаем вместе с частицей? Тогда время ведёт себя нормальна Высокочастотные флуктуации сохраняют свою высокую частоту, далеко выходящую за пределы возможностей нашей медленной камеры. Нахождение вблизи горизонта не даёт нам никаких преимуществ. Как и в случае с Алисиным аэропланом, мы можем видеть только крошечную ступицу.
Теория струн и квантовая теория поля имеют то общее свойство, что вид предметов в них меняется при изменении скорости срабатывания затвора. Но в квантовой теории поля объекты не растут. Вместо этого они распадаются на всё меньшего размера объекты — всё меньшие русские матрёшки. Но когда составляющие становятся меньше планковской длины, начинает работать совершенно иная схема — схема Алисиного аэроплана.
В аллегорической книге Рассела Хобана «Мышонок и его отец»[137] имеется забавная (непреднамеренная) метафора принципа работы квантовой теории поля. Однажды в ходе своего кошмарного приключения игрушечные заводные мыши — отец и сын — обнаруживают бесконечно удивительную банку «Собачьего корма Бонзо». На этикетке банки была изображена собака, держащая банку «Собачьего корма Бонзо», на этикетке которой собака держала банку «Собачьего корма Бонзо», на этикетке которой… И мыши всё всматривались в эту цепочку, стараясь найти «последнюю видимую собаку», но так и не обрели уверенности, что смогли её разглядеть.
Объекты внутри объектов внутри объектов — это и есть суть квантовой теории поля. Однако, в отличие от этикетки «Бонзо», здесь объекты движутся, и чем они меньше, тем быстрее. Поэтому, для того чтобы их увидеть, нужны и более мощный микроскоп, и более быстрая камера. Но обратите внимание: ни разрешённая на части молекула, ни банка «Собачьего корма Бонзо» не становится больше по мере того, как в них открываются всё новые и новые структуры.
Теория струн в этом отличается и работает, как Алисин аэроплан. По мере того как объекты замедляются, становится видно всё больше и больше струнных «пропеллеров». Они занимают всё больше пространства, так что вся сложная структура вырастает в размерах. Конечно, Алисин аэроплан — это аналогия, но она отражает многие математические свойства теории струн. Струны, как и любые объекты, подвержены квантовой дрожи, но особым образом. Подобно Алисиному аэроплану или симфонической версии собачьего свистка, струны вибрируют на множестве разных частот. Большинство этих вибраций слишком быстры для регистрации даже с использованием очень быстрых затворов на мощных ускорителях частиц.
Разбираясь со всем этим в 1993 году, я также начал понимать слепое пятно Хокинга. Для большинства физиков, обученных квантовой теории поля, представление о растущих частицах с неограниченной дрожащей структурой было совершенно чуждым. По иронии судьбы, единственным человеком, который стал догадываться о такой возможности, был величайший специалист в области квантовой теории поля, мой товарищ по оружию Герард 'т Хоофт. Хотя он излагал это по-своему — не на языке теории струн, — его работа также отражает ту идею, что объекты увеличиваются с ростом временнóго разрешения, с которым их исследуют. Напротив, хокинговские ухищрения включали этикетку от «Собачьего корма Бонзо», но не Алисин аэроплан. Для Стивена квантовая теория поля с её точечными частицами была началом и концом микроскопической физики.