Юрий Чирков - Охота за кварками
Ему приписывают и такие слова: «Разве недостаточно факта существования электрона, чтобы построить теорию?!»
Эти вроде бы несерьезные высказывания великого физика ставят серьезные вопросы. Ведь конечный итог развития любой науки не просто накопление фактов, а создание системы знаний.
«Ученый, — говорил А. Пуанкаре, — должен наводить порядок. Наука возводится при помощи фактов, как дом при помощи кирпичей; однако набор фактов является наукой в такой же мере, как груда кирпичей являет собой дом».
С этим заявлением нельзя не согласиться. Конечно, факты являются необходимой составной частью любой науки, но, будучи не взаимосвязаны, они имеют ограниченное значение. Прогресс в науке происходит только благодаря анализу информации, полученной из наблюдений, и формулировке соображений, которые устанавливают связь между фактами и позволяют оценить эту связь.
Теория — своего рода мозг физики, как, впрочем, и любой другой науки. Ее задача — кратко и ясно записать (сформулировать) то, что продиктовал эксперимент, и сделать это так, чтобы сразу стали видны все следствия, чтобы было понятно, каких деталей недостает, какие новые опыты необходимы. Но это еще не все, что требуется от теории.
«Истинная теория должна быть уязвим а, — считает советский физик, доктор физико-математических наук профессор Н. Мицкевич. — Ее достоинство не в том, что ее в последний момент можно подогнать под имеющиеся факты, а в том, что в ней, как в хорошем часовом механизме, все колесики на своих местах — стоит переставить хоть два из них, остановится вся сложная машина, и потребуется не просто ремесло, а подлинное искусство, чтобы отыскать причину поломки. И в этом, а не в бесконечном хлопотливом и неинтересном ремонте заключается действительный процесс познания, ибо каждая «поломка» — открытие качественно нового и глубоко содержательного закона природы, требующее его осмысления и приведения в соответствие со всем стройным комплексом наших знаний. Сам факт возможности такого построения и развития науки знаменует чтото совершенно особенное в природе, великую гармонию ее частей, целостность, при которой деление на части — условность, вызванная нашим собственным несовершенством…»
Роль теории более или менее ясна. А эксперимент, его значение? Конечно, это строгий контролер и отбраковщик теоретических концепций. Однако связь теории и эксперимента далеко не так тривиальна, как это может показаться с первого взгляда. Ведь, строго говоря, никогда нельзя доказать справедливость данной теории, хотя ее несправедливость можно установить экспериментами.
Предположим, собраны факты и построена теория, их объясняющая. С помощью этой теории мы можем сделать ряд предсказаний и проверить их в новых экспериментах. Если мы сделали 10 предсказаний и 9 из них проверили экспериментально, это еще не доказывает, что данная теория правильна: может оказаться, что десятое предсказание ошибочно! Однако в этой неудаче будет содержаться и своего рода успех, так как мы теперь будем точно знать, где именно теория несостоятельна.
Теория и эксперимент, их двуединство весьма и весьма плодотворно для развития физики. Тесное взаимодействие фактов и осмысления ставит множество методологических и философских проблем. Одна из них такова.
Сколько же экспериментальных фактов (долой лишние!) необходимо для теории? Какими должны быть эти факты? Вообще, какова оптимальная дозировка в смеси «эксперимент — теория»?
Физики уже не раз ставили перед собой подобные вопросы. Д. Блохинцев, например, отвечая на вопрос журналиста: «Что же мешает созданию новой всеобъемлющей теории элементарных частиц?» — говорил (1971) так:
«Нам трудно сейчас решить, в чем дело. Не хватает ли глубины понимания явлений, идеи, которая могла бы пролить свет на весь огромный комплекс фактов, или не хватает самих фактов?..»
Приводил он тогда примеры и из истории физики. Пока физики не дошли до понимания того, что существуют молекулы и атомы (теоретическая концепция!), не было и понимания различий между газообразными, жидкими и твердыми телами.
А вот противоположный пример, где видна зависимость теории от эксперимента. Пока Э. Резерфорд не обнаружил экспериментально атомного ядра, не было и предпосылок для создания планетарной модели атомов, работа у теоретиков не двигалась.
Изучение природы ставит перед исследователями непростые проблемы. Мы в этой книге много говорили о теоретиках, об их геройствах, научных подвигах. Пытались мы (в этой главе) разглядеть и фигуру экспериментатора. Осознали и то, что, по пословице, один экспериментатор (во всяком случае, при работе на ускорителях!) в поле не воин. Теперь же хотелось бы сравнить значимость этих главных фигур на шахматной доске физики.
Впрочем, может быть, такое сопоставление бестактно и бессмысленно? Один журналист высказался в том духе, что сравнивать роль теоретика и экспериментатора столь же глупо, как и обращаться к ребенку с запрещенным вопросом: «Кого ты больше любишь — маму или папу?»
Это одна точка зрения. Но есть и другие. Существует, к примеру, «доктрина экспериментизма». Она утверждает главенствующую роль эксперимента. В свое время экспериментисты доказывали, что вся теория относительности целиком выросла из одного-единственного опыта американского физика А. Майкельсона, в котором он с величайшей точностью установил независимость скорости света от скорости движения Земли (1881), перечеркнув тем самым гипотезу о мировом эфире.
Взгляды экспериментизма, понятно, развивают в основном экспериментаторы. Теоретики же, естественно, остаются при своем мнении. Они отмечают одну интересную особенность развития физики XX века. Говорят о том, что в этом столетии произошел резкий сдвиг в равновесии между теоретической и экспериментальной физикой.
Говорят о тенденции к господству теории над экспериментом.
Действительно, современная теоретическая физика в основном уже недоступна пониманию большинства физиков-экспериментаторов — во всяком случае, без соответствующих пояснений. И хотя не «предусмотренные» теоретиками и идущие вразрез с теорией экспериментальные открытия еще случаются, главные усилия экспериментаторов сегодня направлены на проверку теоретических гипотез.
Оно и понятно! Отдельному физику-экспериментатору (и даже большим группам физиков) трудно получить доступ к оборудованию, где приборы-ускорители стали размером с Лужники, где необходимо обрабатывать миллионы фотографий ради одной, подтверждающей идею, пришедшую в голову теоретику. А главное: экспериментаторы получают ныне дорогостоящее и сложное оборудование только в том случае, если докажут, что их опыты будут иметь то или другое отношение к господствующим в физике теориям.
Эксперимент активный и пассивный
В мае 1976 года в Серпухове (ИФВЗ) состоялось международное совещание физиков. Тогда рассматривалась возможность строительства силами многих стран самого большого ускорителя — «мировой машины», с энергией 104 ГзВ и диаметром до 30 километров.
«Суперускоритель? А cтоит ли его возводить? — тотчас же раздались сердитые голоса. — Стоит ли столь крупная игра свеч? Не есть ли это просто монументальные безделушки, созданные, чтобы удовлетворить ненасытную любознательность ученых? Да и дорого! Где взять необходимые средства? Ведь известно, что стоимость среднего эксперимента на ускорителях составляет порядка миллиона рублей, и, по-видимому, в ближайшие годы эта цифра станет еще больше».
И раздаются призывы вернуться от активного эксперимента к пассивному, скажем, больше внимания уделять космическим лучам.
«Но ускоритель, — возражают сторонники активных экспериментов, — дает 1012-1013 ускоренных частиц в секунду в виде тонкого (тоньше карандаша) управляемого пучка, в то время как поток космических лучей сильно разрежен (очень энергичные частицы — по стандартам, достигнутым на ускорителях встречаются тут одна на квадратный километр за год!) и неуправляем».
«Зато, — отвечают приверженцы пассивных действий, — создание лаборатории для исследования космических лучей стоит столько, сколько уходит на проведение лишь одного значительного эксперимента на ускорителе!»
В этих словах, конечно, есть своя сермяжная правда.
Академик Я. Зельдович как-то шутил, что ранняя горячая Вселенная (в известной мере космические лучи — это отголоски тех далеких бурных времен) — это природный ускоритель для «бедного человечества», которое пока не может на Земле создать такие условия.
Исследования космиков (так называют себя те, кто ловит космические лучи) уже не раз давали интереснейшие результаты.
В 1964 году в фотоэмульсии, поднятой в стратосферу, было обнаружено событие, в котором родилось сразу около 150 квантов. Это значит, что энергия прилетевшей из космоса первичной частицы равнялась 106 ГэВ! Анализ этого явления дал много ценного, и ему было присвоено собственное имя «Одинокая звезда Техаса».