Программируя Вселенную. Квантовый компьютер и будущее науки - Ллойд Сет
Переход из одного состояния в другое с испусканием или поглощением фотона требует определенного количества времени, которое зависит от интенсивности лазерного луча. В частности, можно подвергнуть атом воздействию импульса лазерного света со следующим результатом: если атом находится в нормальном состоянии, он переходит в первое возбужденное состояние, поглощая в этом процессе фотон; а если атом находится в первом возбужденном состоянии, он переходит в нормальное состояние, испуская фотон. Нормальное и первое возбужденное состояния атома соответствуют одному биту. Можно принять, что нормальное состояние соответствует 0, а первое возбужденное состояние соответствует 1. Но атом – это не просто бит; это – кубит. Состояния атома соответствуют волнам, точно так же как состояния ядерных спинов, описанных выше. Так что в соответствии с нашим соглашением – заключать квантово-механические объекты в скобки – мы назовем нормальное состояние |0>, а первое возбужденное состояние |1>. Если мы применим к атому лазерный импульс, |0> перейдет в |1>, а |1> перейдет в |0>. На языке атомов – атом просто переходит из состояния в состояние; на языке нулей и единиц – это уже известная нам логическая операция «не». Говоря на языке атомов, мы можем заставить атом инвертировать бит.
Как заставить атом отвечать нам? Мы можем воздействовать на атом светом, и атом ответит нам, тоже используя свет. Представим себе третье состояние, |2>, с более высокой энергией, чем в состояниях кубита |0> и |1>. Предположим, что всякий раз, когда атом находится в состоянии |2>, он имеет тенденцию спонтанно возвращаться в |0>, в нормальное состояние, испуская при этом фотон. Спонтанное излучение ответственно за явление флуоресценции. Флуоресцентная лампа возбуждает атомы из их нормального состояния и позволяет им переходить обратно, излучая свет. Энергия испускаемого фотона равна разности энергий между состоянием |2> и состоянием |0>. Если посмотреть внимательно, скажем в микроскоп, иногда можно увидеть испускаемый фотон как вспышку света. Это атом говорит с нами.
Историю Вселенной можно рассматривать как последовательность революций в сфере обработки информации, каждая из которых основана на технологиях, возникших в результате предыдущих революций
Чтобы инвертировать квантовый бит, достаточно просто направить на него луч света. Рис. 11a показывает кубит – ядерный спин – в состоянии «вверх», или 0. На рис. 11b появляется частица света, или фотон. Она поглощается ядерным спином, который переходит в состояние «вниз», или 1 (рис. 11c)
Способность видеть спонтанно испускаемые фотоны позволяет нам определить, находится ли атом в нормальном состоянии. Искупайте атом в свете из фотонов, энергия каждого из которых равна разности энергий между состояниями |0> и |2>. Если атом находится в нормальном состоянии, то, поскольку фотоны, в которых он купается, обладают правильной энергией, он поглотит фотон и перейдет в состояние |2>. Вскоре после этого он испустит фотон и вернется в нормальное состояние. Затем он поглотит еще один фотон и перейдет в состояние |2>. Затем он испустит фотон и опять вернется в нормальное состояние. Такой процесс, в котором атом продолжает поглощать и испускать фотоны, называют «циклическим переходом», потому что атом переходит туда и обратно между двумя хорошо определенными состояниями.
Если же атом сначала находится в состоянии |1>, то он не может поглотить фотон и перейти в состояние |2>, потому что доступные ему фотоны обладают неподходящей энергией. Атом, который сначала находится в состоянии |1>, в нем и останется, не обращая внимания на фотонный душ, и флуоресценции не будет. А вот атом, который демонстрирует флуоресценцию, по существу, говорит нам: «Я – 0! Я – 0! Я – 0! Я – 0!»
Теперь давайте посмотрим повнимательнее, как атомы переходят из одного состояния в другое под воздействием лазера. Возьмем атом в его нормальном состоянии и искупаем его в свете из фотонов, энергия которых равна разности энергий нормального и первого возбужденного состояния. Что происходит во время скачка? Во время перехода атом и свет находятся в состоянии, которое является суперпозицией нормального состояния атома без поглощенного фотона, и атома в первом возбужденном состоянии с одним поглощенным фотоном. То есть состояние атома – суперпозиция двух волн. Первая волна находится в нормальном состоянии, а вторая волна – в первом возбужденном состоянии. Сразу же после того как атом начинает принимать световой душ и начинает переход, эта суперпозиция состоит главным образом из нормального состояния с небольшой «примесью» возбужденного. В середине перехода атом и световая ванна находятся в примерно равной суперпозиции состояний |0, фотон не поглощен> + |1, фотон поглощен>. Вблизи конца перехода суперпозиция представляет собой главным образом возбужденное состояние, с небольшим остатком нормального состояния.
Итак, атом перескакивает из нормального состояния в возбужденное не сразу. Он скорее «скользит» через непрерывную последовательность промежуточных суперпозиций. Такое же непрерывное скольжение происходит, когда атом возвращается из первого возбужденного в нормальное состояние, испуская фотон. Атом и фотонный душ начинают в состоянии |1, фотон не испущен>, и заканчивают в состоянии |0, фотон испущен>. В середине перехода атом и душ находятся в состоянии суперпозиции |1, фотон не испущен> + |0, фотон испущен>.
Такое описание атома, переходящего из одного состояния в другое с поглощением или испусканием фотона, похоже на сделанное ранее описание ядерного спина, переходящего из одного состояния в другое под воздействием магнитного поля. Действительно, эти два процесса по сути одинаковы. Поворачиваясь, ядерный спин также поглощает фотон – из магнитного поля – и испускает фотон, возвращаясь в исходное состояние.
Теперь вы знаете, как разговаривать с атомами. Облучая атом лазером, можно управлять его состоянием. Можно непрерывно проводить атом через последовательность состояний суперпозиции; можно возбудить его, заставляя поглотить фотон, и вернуть обратно из возбужденного состояния, заставляя испустить фотон. Мы также знаем, как заставить атом нам отвечать. Управляя циклическими переходами, можно спросить атом, содержит ли он 0 или 1, и получить ответ. Все это значит, что теперь мы получили возможность создавать новые биты.
Возьмем атом и подействуем на него лазером, чтобы перевести в суперпозицию |0> + |1>. Теперь запустим циклический переход, чтобы увидеть, находится ли атом в состоянии 0 или в состоянии 1. Если состояние атома 0, он будет флуоресцировать; если его состояние 1, он останется темным. Мы подбросили квантовую монетку и создали совершенно новый бит.
Разговор с атомом посредством циклического перехода измеряет состояние атома и создает информацию. Конечно, как и в предыдущей главе, то, что происходит во время измерения, открыто для интерпретации. Если рассматривать измерения как коллапс волновой функции, волновая функция атома, взятого вместе с фотонами, коллапсирует либо до состояния |0, есть флуоресценция>, либо до состояния |1, нет флуоресценции>.
В интерпретации декогерентных историй состояние атома вместе с фотонами находится в суперпозиции |0, есть флуоресценция> + |1, нет флуоресценции>. Каждое из состояний в этой суперпозиции соответствует декогерентной истории. В нашем случае истории чрезвычайно декогерентны. Чтобы сделать их когерентными, нужно было бы собрать все фотоны, испущенные атомом, отразить их назад и заставить атом повторно их поглотить. Для этого нужен своего рода демон Лошмидта, способный изменять последовательность событий во времени. Но обратить фотоны, рассеянные по всей Вселенной, трудно (если вы сомневаетесь – валяйте, обратите их!). Из-за того что два состояния в суперпозиции декогерентны, атом и фотон ведут себя так, как будто они находятся или в одном состоянии, или в другом, и мы действительно создаем совершенно новый бит, никогда не существовавший прежде.