Kniga-Online.club
» » » » Кристиан Жоаким - Нанонауки. Невидимая революция

Кристиан Жоаким - Нанонауки. Невидимая революция

Читать бесплатно Кристиан Жоаким - Нанонауки. Невидимая революция. Жанр: Научпоп издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Затем Мюллер получил множество изображений иных молекул. В то время автоэлектронный микроскоп (эмиссионно-полевой микроскоп) лет на пятнадцать опережал своего соперника, которым был микроскоп электронный. Но эта техника — лишь вынужденная необходимость для некоторых предельных условий, складывающихся в определенных электрических полях и при определенных давлениях. Кроме того, автоэлектронный микроскоп не дает такого четкого представления об атомных структурах молекул, как установки с рентгеновскими лучами или электронный микроскоп. В наши дни используется автоионный (ионно-полевой) микроскоп для определения характеристик структуры игл на атомном уровне, что важно в работе с туннельным микроскопом.

РОЖДЕНИЕ ЭЛЕКТРОННОГО МИКРОСКОПА

В начале 1930-х годов инженер Берлинского университета Эрнст Руска получил задание определить параметры, необходимые для контроля диаметра пятна, образованного пучком электронов, пропущенным через отверстие в металлической пластинке. Поначалу он решил воспользоваться соленоидом (тороидальной катушкой, которая, если по ее виткам течет электрический ток, действует как магнит), полагая, что соленоид сможет менять диаметр пучка электронов так, как линза фокусирует проходящие через нее лучи света. Затем он подумал, что аналогия между электронами и видимым светом сулит много больше, и построил просвечивающий микроскоп из источника электронов, соленоида и проекционного экрана (все это, понятно, было помещено в вакуум). Потом он поместил между соленоидом и экраном небольшой предмет — и соленоид повел себя на манер линзы в оптическом микроскопе. Так Руска получил увеличение в 14,4 раза и — изобрел электронный микроскоп.

Памятуя о теоретических ограничениях возможностей получения изображений с помощью света, Руска в глубине души надеялся, что электроны смогут обеспечить лучшее разрешение. Увы, в 1927 году Луи де Бройль опубликовал работу, ознакомившись с которой Руска приуныл: выходило, что с электроном, как и со всякой материальной частицей, связана некая волна. Руска так хотел обойти теоретические ограничения оптики — и на тебе: его микроскоп тоже подчиняется законам волновой физики, в частности, не свободен от явлений вроде дифракции. Но трудности его не остановили: в 1932 году Руска показал, что предел разрешения электронного микроскопа не хуже 0,22 нм. И воспрял духом: это обещало, в теории, возможность видеть атомы!

Так начинался тот спектакль. К концу 1930-х годов увеличение электронного микроскопа достигло 30 тыс. раз, а в 1950-е уже измерялось сотней тысяч раз. Чтобы увидеть атом, требовалось умножить эти цифры еще хотя бы на тысячу.

Колыбелью прогресса стала компания Telefunken: молодые ученые пытались решить сложнейшие технические задачи, параллельно развивая телевидение. И чего они только не пробовали: подбирали режим пропускания электронов через образец, преломление, сканирующие метания тонюсенькой электронной кисточки, сочетали все это… но увидеть атом не удавалось. Только в 1970 году на экране электронного микроскопа появились первые изображения атомов, но случилось это не в Германии, а в Соединенных Штатах, где создали электронный микроскоп в одно и то же время и просвечивающий, и сканирующий.

Рис. 3. Изображение сверхтонкого кристалла фталоцианина меди на экране просвечивающего электронного микроскопа, которое получил X. Хасимото в лаборатории токийского университета в 1974 году. На изображение, запечатленное на обычной фотографической пластинке пучком электронов, прошедшим через кристалл, наложена — в правой части снимка — структурная формула молекулы

В 1974 году на арену вновь вышла наша молекула фталоцианина меди. И вновь заставила заговорить о себе. X. Хасимото из Токийского университета избрал ее в качестве исследуемого образца, потому что в центре ее находится атом меди, который хорошо обнаруживается просвечивающим электронным микроскопом. Хотя тот же микроскоп не видел атомы углерода и азота, тоже присутствующие в молекуле, X. Хасимото рассчитывал, что ему удастся наблюдать правильную решетку, образованную атомами меди. Поместив кристаллик фталоцианина меди в свой микроскоп, он получил прекрасные изображения, к тому же уточнив подробности на автоионном микроскопе (рис. 3). У этой техники есть еще одно выгодное преимущество: она не требует создания каких-то особенных условий — высокого давления и т. п.; изображение наблюдается непосредственно, в отличие от метода, использующего дифракцию рентгеновских лучей.

ТУННЕЛЬНЫЙ МИКРОСКОП

Во всех только что описанных микроскопах источник излучения заметно удален от экрана, на котором и наблюдаются результирующие изображения. А что, если приблизить иглу к металлическому экрану? Игла и экран оказываются обкладками конденсатора, которые могут быть электрически заряжены и между которыми может возникнуть напряжение. К примеру, при напряжении порядка 1 В на обкладках конденсатора скапливается несколько электронов (если расстояние между иглой и поверхностью поддерживается в пределах нескольких нанометров). Поскольку напряжение поляризации (напряжение между обкладками конденсатора) мало, электроны не стекают с иглы — в отличие от электронного микроскопа.

Но этот малюсенький конденсатор страдает одним изъяном: он так мал, что обкладки электрически — точнее, «электронно» (посредством электронов) — взаимодействуют через промежуток между иглой и поверхностью. Это значит, что электрон «не знает», на какой он обкладке. «Неведение» это квантовой природы, и выражается оно в токе утечки ничтожной силы, а само явление называется туннельным эффектом. При напряжении поляризации в 1 В и расстоянии между иглой и поверхностью в 1 нм сила тока утечки имеет величину порядка 1 нА и уменьшается по мере удаления иглы от поверхности. Хотя ток силой в наноампер кажется ничтожно малым, сама эта величина означает, что за секунду между иглой и поверхностью перемещается порядка 1010 электронов. Однако нашлись люди, превратившие этот порок в добродетель, — ими были Генрих Рорер и Герд Бинниг, работавшие в исследовательской лаборатории IBM в Цюрихе.

В конце 1970-х годов Рорер заинтересовался дефектами сверхтонких изолирующих пленок, нанесенных на поверхность металла или полупроводника. Размеры этих дефектов часто не превышали 10 нм, но они сильно вредили магнитной памяти и миниатюрным транзисторам. Однако в то время исследование строения этих изъянов с помощью любого микроскопа — во всяком случае, без разрушения самих дефектов — было невозможно.

Бинниг и Рорер решили как-то воспользоваться током утечки, возникающим из-за туннельного эффекта, который вполне мог сообщать и о качествах дефектов, и о расстоянии от кончика иглы до поверхности — речь, словом, шла об определении рельефа исследуемого образца. В работе к ним присоединился инженер-исследователь Кристоф Гербер, тоже трудившийся на IBM. Втроем они собрали из подвернувшихся под руку деталей прибор с очень тонкой и длинной иглой, которую можно было, по желанию, поднимать и опускать над поверхностью, и устройством для замера ничтожно малых токов — порядка наноампера. Они рассчитывали, что, сканируя поверхность иглой, то есть перемещая иглу над поверхностью так, чтобы покрыть всю ее площадь, и замеряя при этом силу туннельного тока, удастся построить, строка за строкой, все изображение обследуемой площадки, подобно тому как это происходит в сканирующем электронном микроскопе.

Рорер, Бинниг и Гербер строили пробный образец своего прибора три года. В 1981 году они экспериментально проверяли закон зависимости силы туннельного тока от расстояния между иглой и поверхностью. Оказалось, что сила тока уменьшается в 10 раз, если между иглой и поверхностью остается только 0,1 нм. Надо думать, для того чтобы уверенно называть такие цифры, требуется небывалая точность позиционирования иглы: нужно не только подвести иглу к поверхности, но и сохранять заданное расстояние по ходу сканирующих метаний — по горизонтали и по вертикали — иглы над поверхностью. Помогли три стерженька из материала, почти не деформирующегося под напряжением.

Сканирование производится при поддержании постоянной силы туннельного тока: игла поднимается над бугорками и опускается над впадинами сканируемой поверхности. Но если экспериментаторы рассчитывали обнаружить на обследуемой «гладкой» площадке своего образца правильную череду ступенек, то линии развертки, полученные осенью 1982 года, показали вереницу бугорков. Профиль, зарегистрированный прибором, отобразил точную атомную топографию просканированного кристалла! Так родился туннельный микроскоп, создатели которого в 1986 году получили Нобелевскую премию по физике.

Из вышесказанного ясно, что туннельный микроскоп относится к микроскопам ближнего поля: кончик иглы удерживается близ обследуемой поверхности. Если нечаянно или еще почему-то игла коснется поверхности, сила тока мгновенно увеличится до величин порядка 100 мкА, что в сто тысяч раз больше туннельного тока. Прибор оснащен специальной амортизацией, оберегающей иглу от внешних механических колебаний.

Перейти на страницу:

Кристиан Жоаким читать все книги автора по порядку

Кристиан Жоаким - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Нанонауки. Невидимая революция отзывы

Отзывы читателей о книге Нанонауки. Невидимая революция, автор: Кристиан Жоаким. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*