Программируя Вселенную. Квантовый компьютер и будущее науки - Ллойд Сет
Мы как не знали значение первого бита, так и не знаем его после выполнения операции: он по-прежнему находится в состоянии 0 или в состоянии 1. Но посмотрим на второй бит. Теперь он тоже может находиться в состоянии 0 или 1. Второй бит, значение которого до операции было 0, теперь тоже имеет неизвестное значение. Операция «условное не» заставила неизвестную информацию первого бита «заразить» второй бит – незнание распространилось! (Распространение неведения обратимо. Чтобы вернуть оба бита в исходное состояние, нужно выполнить операцию «условное не» повторно. Операция «условное не» является обратной по отношению к самой себе: выполнить ее дважды – все равно что не делать ничего вообще.)
Распространение неведения увеличивает энтропию отдельных битов в системе. Энтропия первого бита по-прежнему составляет один бит, но энтропия второго увеличивается. Тем не менее энтропия пары битов, взятых вместе, остается постоянной! Перед операцией «условное не» два бита могли находиться в одном из двух состояний – 00 или 10. В системе один бит энтропии – в первом бите из пары. После операции «условное не» пара битов может находиться в одном из двух состояний – 00 или 11. Мы по-прежнему видим один бит энтропии, но теперь он распределен между двумя битами.
Распространение неведения отражается в росте величины, которая называется «взаимная информация». У каждого бита после операции есть собственный бит энтропии, но у двух битов, взятых вместе, тоже есть только один бит энтропии. Взаимная информация равняется сумме энтропий, взятых по отдельности, минус энтропия двух битов, взятых вместе. Другими словами, у двух битов есть ровно один бит взаимной информации. Какую бы информацию они ни содержали, они содержат ее вместе.
Неведение атомов
«Заразный» характер информации относится и к сталкивающимся атомам, и к битам в вычислении. Идею о том, что энтропия отдельных атомов газа имеет тенденцию увеличиваться, впервые выдвинул Людвиг Больцман в 1880-х гг. Больцман определил величину, которую назвал «H», как степень, до которой мы знаем положение и скорость любого данного атома газа.
Величина «H» Больцмана фактически является энтропией отдельного атома, умноженного на минус один. Больцман показал, что, когда положения и скорости атомов не коррелирует, то есть независимы друг от друга, столкновения между ними уменьшают «H» и увеличивают энтропию отдельных атомов. Последующие столкновения, утверждал он, продолжат увеличивать эту энтропию. Он пришел к выводу, что его H-теорема является обоснованием второго начала термодинамики и доказывает математически, что энтропия должна увеличиваться.
Проблема H-теоремы Больцмана состоит в том, что она, строго говоря, не является истинной для атомов газа. Больцман был прав в том, что столкновения между первоначально некоррелирующими атомами увеличивают энтропии отдельных атомов. Эти энтропии увеличиваются из-за «заразного» характера информации. Когда сталкиваются два атома, любая неопределенность по поводу положения и скорости первого атома имеет тенденцию «заражать» второй атом, делая его положение и скорость более неопределенными и тем самым увеличивая его энтропию. Такое увеличение энтропии второго атома похоже на увеличение энтропии второго бита, описанного выше, когда этот бит был подвергнут операцией «условное не», где неизвестный бит выступал в роли управляющего.
Ошибка H-теоремы связана с последующими столкновениями атомов. Если два атома столкнулись и обменялись информацией, последующие столкновения могут уменьшить энтропию отдельных атомов. Чтобы понять, как взаимодействие между двумя атомами, которые сталкивались раньше, может уменьшить их энтропию, вернитесь к паре битов, которую мы обсуждали выше. При первом применении операции «условное не» энтропия управляющего бита заразила второй бит, увеличив его энтропию на один бит. Но если операцию «условное не» применить снова, второй бит восстанавливает свое первоначальное, известное состояние, уменьшая свою энтропию на один бит.
В принципе, похожую обратную операцию, результатом которой будет аналогичное уменьшение энтропии, можно придумать и для атомов. Когда Больцман представил свою H-теорему как доказательство второго начала термодинамики, его коллега Йозеф Лошмидт указал, что H-теорема не может быть всегда истинной, ведь обращением скоростей атомов можно «взять назад» их столкновение и уменьшить их энтропии. (Гипотетическое существо, которое могло бы изменить скорости атомов на противоположные, называют демоном Лошмидта. В те времена у всех были свои демоны.) Услышав этот (правильный) аргумент, Больцман был вынужден прибегнуть к сарказму: «Валяйте, обратите их».
Первоначальный довод Больцмана в пользу его H-теоремы был основан на предположении о природе столкновений атомов, получившем название «гипотезы молекулярного хаоса». Даже если положения и скорости двух атомов могли бы иметь корреляцию до их столкновения, утверждал Больцман, многократные столкновения между многими атомами должны ослаблять эту корреляцию, и, в сущности, два сталкивающихся атома газа не должны быть коррелированными в момент столкновения. Сразу после столкновения положения и скорости двух атомов коррелируют. Но поскольку они продолжают сталкиваться с другими атомами, их корреляция друг с другом должна ослабевать. Больцман утверждал, что к моменту следующего столкновения эти два атома можно рассматривать как не имеющие корреляции, то есть как будто они никогда не сталкивались раньше. Если предположение о молекулярном хаосе справедливо, то энтропии отдельных атомов почти всегда увеличиваются. Это увеличение можно в принципе отменить, если обратить процесс столкновения, а-ля Лошмидт. Но на практике такое обращение происходит редко.
Гипотеза молекулярного хаоса – хорошая гипотеза, она верна для многих сложных систем, например для газов. Но она не является истинной для всех физических систем. Как мы увидим, во многих физических системах можно обратить взаимодействия между частями системы, тем самым отменяя увеличение энтропии этих частей.
Но в целом предположение Больцмана работает хорошо. Даже после того как атомы столкнулись один раз, их последующие столкновения имеют тенденцию увеличивать энтропии каждого из них. Почему гипотеза молекулярного хаоса так хорошо работает? В своей магистерской работе «Распространение неведения» и диссертации доктора философии «Черные дыры, демоны и утрата когерентности» я ответил на этот вопрос, предложив подход к объяснению второго начала термодинамики через распространение неведения. Этот метод показывает, что H-теорема Больцмана «почти истинна» для «почти всех» физических систем.
Снукер
Пожалуй, надо немного рассказать о том, как формировался мой подход к теме. Окончив Гарвард, я поступил в Кембриджский университет, получив стипендию Маршалла. Эти стипендии дает британское правительство в благодарность за американский план Маршалла, который помог восстановить Европу после Второй мировой войны. (Однако дальше стипендий эта благодарность не распространяется. В самый первый день в Кембридже я зашел в паб под названием «Локомотив». У парня, сидевшего рядом со мной за стойкой, был зеленый «ирокез» и ошейник. Когда я сказал ему, что его правительство платит за то, чтобы я, американец, учился в Кембридже, он весьма неблагодарно настоял на том, чтобы я покинул помещение.) Первый год в Кембридже я провел, слушая спецкурс по математике и физике под названием «Part III Maths», одна из целей которого состоит в том, чтобы выявлять перспективных ученых и избавляться от остальных. Студенты, которые получают лучшие оценки по Part III, потом, как правило, переходят к написанию диссертации. Самых лучших студентов в Кембридже называют «ковбоями». Максвелл, например, был типичным «ковбоем». Что касается остальных – ну, наградой для худшего студента по окончании курса была деревянная ложка в четыре фута длиной.