Kniga-Online.club
» » » » Luis Alvarez - Самая сложная задача в мире. Ферма. Великая теорема Ферма

Luis Alvarez - Самая сложная задача в мире. Ферма. Великая теорема Ферма

Читать бесплатно Luis Alvarez - Самая сложная задача в мире. Ферма. Великая теорема Ферма. Жанр: Научпоп издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Рене Декарт

В данном месте нашего повествования должно стать очевидным, какое значение имела для нашего героя работа Виета, с которой Ферма познакомился в Бордо. Действительно, мы уже наблюдали у Ферма тенденцию идти от частного к общему, анализировать структуру уравнений, решающих целый класс задач, — преимущество, которое он отдавал общему методу перед конкретным решением локальной задачи. Виет не только предлагал методы и решения, он создал математическую программу, доведенную Ферма до последних выводов. Но он был не один. Другой великий мыслитель, Рене Декарт, пришел к таким же заключениям. Они втроем — Виет, Декарт и Ферма — создали методы современной математики, навсегда разорвав их связь с элегантными построениями Евклида и древнегреческих геометров. Туда, где раньше царствовали чертежи, построенные с помощью линейки и циркуля, теперь пришли алгебраические действия, совершаемые каждый раз над все более необычными объектами. Алгебра действительно превратилась в их руках в преимущественный способ математических рассуждений.

Очевидно, что Ферма многим обязан в математике Виету, однако остается спорным, до какой степени последний повлиял на Декарта. Некоторые историки, например Богран, предполагают знакомство Декарта с работами Виета, другие считают, что Декарт, по его же собственным словам, пришел к своим результатам независимо. Но так как он систематизировал лучше Виета, его запись оказалась намного более ясной (вспомним, что понятная запись в математике может озарить, в то время как неясная способна сбить с мысли). Также его теория уравнений была настолько выше теории Виета, что через одно поколение она полностью победила, оставив последнего в забвении. Там, где Виет пользовался изнурительными казуистиками, очень соответствующими образу мысли адвоката, Декарт рассуждал как философ.

Несмотря на свои революционные догадки, Виет в каких- то аспектах оставался привязанным к прошлому. Для него неизвестная, возведенная в квадрат, имела очень специфическое значение: это настоящий, геометрический квадрат, площадь. То же самое для неизвестной, возведенной в куб: это куб, объем. И, несмотря на то что он был способен представить себе большие степени (четвертые, пятые), не имеющие очевидного геометрического значения, ему не удалось сделать основополагающего шага: подумать о том, что многочлен может быть неоднородным, то есть его члены могут иметь различные степени: ax3 + bx2 + cx = d. Для него подобное было как сложение груш с яблоками, линии с кубом, квадрата с точкой. Это не имеет геометрического смысла. Таким образом он сформулировал закон однородности: многочлены должны быть суммами одночленов одной и той же степени (квадраты с квадратами, кубы с кубами).

Очевидно, что на плечах Виета еще держалась вся тяжесть греческого наследия, в котором числа не имеют измерения, а геометрические фигуры — имеют. Комбинировать их нет смысла. Для греков понятие измерения неизбежно связано с умножением геометрических элементов: две перемноженные линии дают прямоугольник, а прямоугольник, умноженный на третью линию, дает параллелепипед.

РЕНЕ ДЕКАРТ

Без сомнения, Рене Декарт (1596- 1650) — самая значительная фигура в философии XVII века, и больше всего примечателен отказ этого ученого верить во что-то, что невозможно доказать. Он родился в Лаз, в провинции Франции Турень, окончил университет Пуатье в области права, но вскоре поступил на военную службу в армию Морица Нассауского в войне Фландрии против Испании. Он также участвовал в Тридцатилетней войне под командованием герцога Максимилиана I Баварского, а также в осаде Ла- Рошели, которую Александр Дюма описал в своем романе о мушкетерах.

Когда Декарт служил в армии, у него случилось озарение: все истины должны быть связаны и основаны на первичной истине, то есть "я мыслю, следовательно, я существую". Декарт уверился в том, что разум — это путь к знанию. Большую часть своей жизни после увольнения из армии он провел в Голландской Республике, переезжая из университета в университет. В 1637 году ученый опубликовал "Рассуждение о методе" с приложениями. Через четыре года также увидели свет "Размышления о первой философии". Когда Декарта начал преследовать католический мир, его пригласила королева Швеции Кристина стать ее наставником. Говорят, что привычка королевы вставать рано и держать окна открытыми пошатнула здоровье мыслителя, который умер от воспаления легких 11 февраля 1650 года. Через 13 лет папа Александр VII включил работы Декарта в список запрещенных книг.

Ферма было не так-то просто освободиться от этого греческого наследия, которое мешало работе с более общими многочленами. Он достиг цели, но в своем привычном стиле, не подводя твердой теоретической базы к отказу применять вышеуказанный закон. Декарт, наоборот, обосновал свой отказ от закона однородности. Он был первым, кто использовал верхние индексы (к которым мы так привыкли) для обозначения операции возведения в степень, и он сделал это частично ради того, чтобы освободиться от недостатков предыдущей записи. Вот пример алгебраической записи Виета: В · A quad + + G planum А - Z solido. Quad, planum и solido — это степени, в которые возводятся A, G и Z соответственно для сохранения однородности, с явной геометрической интерпретацией. Декарт отказался от такой интерпретации, говоря: 

"Я сам долго был обманут этими названиями [квадрат, куб]... В конце концов после многочисленных экспериментов я заметил: нет ничего, что можно было бы решить с этой интерпретацией, чего нельзя было бы решить без нее проще и яснее и что от таких названий следует отказаться, чтобы они не путали мысли".

 Декарт утверждает, что если, например, треугольник с неким углом и сторонами а и 1 подобен треугольнику с тем же углом и сторонами ab и b, то все геометрические пропорции соотносятся друг с другом по масштабу и выбранная единица измерения произвольна. Другими словами, произведение ab, имеющее степень 2 и являющееся, следовательно, квадратом, совсем не отличается от линейного числа b. Так, не стоит думать, что представлены различные математические объекты. С точки зрения измерений они равны.

В итоге метод Виета забыли, и победил Декарт, что немаловажно: абсолютная верность Ферма своему, условно говоря, учителю Виету затмила собственный вклад тулузца, часто казавшийся тусклым его современникам и последователям, которые переняли запись и идеи Декарта. Это еще одна из причин, по которым Ферма оказался непонятым современниками.

Существует и еще одна грань работы Виета, которая повлияла на деятельность Ферма. Уже было сказано, что Виет верил (в основном оправданно) в свое аналитическое искусство, и эта вера шла рука об руку с некоторым презрением к синтетической форме доказательств, используемой греками. В работе "Введение в аналитическое искусство" (1571) Виет утверждал: поскольку в его анализе предполагалось, что все этапы доказательства обратимы, синтез в его греческой форме уже не нужен.

Ферма сделал данный принцип Виета одной из основ своего математического исследования. Наряду с его обычным нежеланием писать полные трактаты этот подход проясняет, почему он столкнулся с таким непониманием со стороны современников. Действительно, при нескольких аналитических этапах, которые позволяли ему (как он думал) разглядеть доказательство, для Ферма (как и для Виета) строить доказательство как у греков уже не имело смысла. Это было излишне. Проблема, конечно же, в том, что его современники не находились под таким влиянием аналитического метода Виета, как он. Ферма не смог увидеть данного несоответствия, что привело ко многим размолвкам и разочарованиям. Наконец, любопытно заметить, как уже было показано на некоторых примерах, что Ферма использовал символическую алгебру для своих изысканий, но почти всегда представлял результат в словесном виде. Таким образом, Ферма находился на рубеже двух традиций: между одним, древним, умирающим миром математики и другим, который только зарождался.

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

Настало время немного задержаться на хронологии. В этой книге в хронологическом порядке уже было рассказано почти о всей математической жизни Ферма. Но "другая жизнь" ученого, о которой сейчас пойдет речь, протекала параллельно и в некоторых случаях даже предваряла описанную нами, поэтому стоит вернуться назад во времени, в Бордо.

Ферма жил в Бордо во второй половине 1620-х годов. К тому времени он уже усовершенствовал свой метод максимумов и минимумов и начал восстанавливать работу Аполлония Пергского о плоских геометрических местах, прямой линии и круге. Это сочинение было утеряно, но тот факт, что Папп оставил описания многих античных работ, позволил математикам XV и XVI веков, которые превратились в настоящих археологов знания, попробовать восстановить утраченное. Деятельность Виета включала в себя, во-первых, такое восстановление, а во-вторых, перевод результатов классиков на новый язык аналитического искусства.

Перейти на страницу:

Luis Alvarez читать все книги автора по порядку

Luis Alvarez - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Самая сложная задача в мире. Ферма. Великая теорема Ферма отзывы

Отзывы читателей о книге Самая сложная задача в мире. Ферма. Великая теорема Ферма, автор: Luis Alvarez. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*